An eigenvalue problem for a fractional differential equation with an iterated fractional derivative

  • Salima Bensebaa Ecole supérieure de technologies industrielles

Resumen

This paper concerns the investigation of an eigenvalue problem for a nonlinear fractional differential equation. Using the properties of the Green function, Banach contraction principle, Leray-Schauder nonlinear alternative and Guo-Krasnosel'skii fixed point theorem on cones, the eigenvalue intervals of the nonlinear fractional differential equation are considered. Some sufficient conditions for the existence of at least one positive solution is established. Some examples are presented to illustrate the main results.

Descargas

La descarga de datos todavía no está disponible.

Citas

B. Ahmad and J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integro differential equations with integral boundary conditions, Bound. Value Porblem. (2009), Art. ID 708576, 11 pages. https://doi.org/10.1155/2009/708576

Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Analysis 72, 916-924 (2010). https://doi.org/10.1016/j.na.2009.07.033

Z. Bai, Eigenvalue intervals for a class of fractional boundary value problem, Computers & Mathematics with Applications, 64 (10) 3253-3257 (2012). https://doi.org/10.1016/j.camwa.2012.01.004

L. Bing, Positive solutions of a nonlinear three point boundary value problem, Comput. Math. Appl. 44, 201-211 (2002). https://doi.org/10.1016/S0898-1221(02)00141-4

A. Guezane-Lakoud and R. Khaldi, Positive solution to a higher order fractional boundary value problem with fractional integral condition, Romanian Journal of Mathematics and Computer Sciences, 2 28-40 (2012). https://doi.org/10.1155/2012/651508

D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, San Diego, 1988.

D. Jiang and C. Yuan, The positive properties of the Green function for Dirichlet type boundary value problems of nonlinear fractional differential equations and its application, Nonlinear Analysis 72, 710-719 (2010). https://doi.org/10.1016/j.na.2009.07.012

E. R. Kaufmann and N. Kosmatov, A Second-Order Singular Boundary Value Problem, Comput. Math. Appl. 47, 1317-1326 (2004). https://doi.org/10.1016/S0898-1221(04)90125-3

R. A. Khan, Existence and approximation of solutions of nonlinear problems with integral boundary conditions, Dynam. Systems Appl. 14 (2005) 281-296.

R. A. Khan, M. R Rehman and J. Henderson, Existence and uniqueness of solutions for nonlinear fractional differential equations with integral boundary conditions, Fractional Diff. eq. 1 (1) 29-43 (2001).

A. Kilbas and A. Marzan, Cauchy problem for differential equation with Caputo derivative, Fractional calculus and applied analysis 7 (3) (2004).

A. Kilbas, M. Srivastava and J. J. Trujillo, Theory and applicaions of fractional differential equations, in: North-Holland Mathematics Studies, 204, Elsevier Science, B.V. Amsterdam, (2006).

S. Sun, Y. Zhao, Z. Han, and J. Liu, Eigenvalue problem for a class of nonlinear fractional differential equations, Annals of Functional Analysis, 4 (1) 25-39 (2013). https://doi.org/10.15352/afa/1399899834

X. Xu, Positive Solutions for Singular Semi-positone Boundary Value Problems, J. Math. Anal. Appl. 237, 480-491 (2007).

X. Xu, D. Jiang and C. Yuan, Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear Analysis 71, 4676-4688 (2009). https://doi.org/10.1016/j.na.2009.03.030

S. Q. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations, Electronic Journal of Differential Equations 36, 1-12 (2006). https://doi.org/10.1155/2007/76493

X. Zhang, L. Liu, and Y. Wu, The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives, Applied Mathematics and Computation, 218 (17) 8526-8536 (2012). https://doi.org/10.1016/j.amc.2012.02.014

Publicado
2022-01-26
Sección
Articles