A variation on strongly ideal lacunary ward continuity
Resumen
The main purpose of this paper is to introduce the concept of strongly ideal lacunary quasi-Cauchyness of order (alpha,beta) of sequences of real numbers. Strongly ideal lacunary ward continuity of order (alpha,beta) is also investigated. Interesting results are obtained.
Descargas
Citas
M.A. Al Shumrani, S. Jafari, C. Ozel and N. Rajesh, A new type of contra-continuity via - -open sets. C. R. Acad. Bulgare Sci. 71(7) (2018) 867-874. https://doi.org/10.7546/CRABS.2018.07.01
N.L. Braha and H. Cakalli, A new type continuity for real functions. J. Math. Anal. 7(6) (2016) 54-62.
D. Burton and J. Coleman, Quasi-Cauchy Sequences. Amer. Math. Monthly 117(4) (2010) 328-333.
https://doi.org/10.4169/000298910x480793
A. Caserta, G. Di Maio and L.D.R. Kocinac, Statistical convergence in function spaces. Abstr. Appl. Anal. 2011 (2011) Art. ID 420419, 11 pp. https://doi.org/10.1155/2011/420419
J. Connor and K.-G.Grosse-Erdmann, Sequential definitions of continuity for real functions. Rocky Mountain J. Math. 33(1) (2003) 93-121. https://doi.org/10.1216/rmjm/1181069988
J. S. Connor, The Statistical and strong p−Cesaro convergence of sequences. Analysis 8(1-2) (1988) 47-63.
https://doi.org/10.1524/anly.1988.8.12.47
H. Cakalli, Statistical quasi-Cauchy sequences. Math. Comput. Modelling 54(5-6) (2011) 1620-1624.
https://doi.org/10.1016/j.mcm.2011.04.037
H. Cakalli, Statistical ward continuity. Appl. Math. Lett. 24(10) (2011) 1724-1728. https://doi.org/10.1016/j.aml.2011.04.029
H. Cakalli, A new approach to statistically quasi Cauchy sequences. Maltepe Journal of Mathematics 1(1) (2019) 1-8. https://doi.org/10.1063/1.5095095
H. Cakalli and B. Hazarika, Ideal quasi-Cauchy sequences. J. Inequal. Appl. 2012(234) (2012) 11pp. https://doi.org/10.1186/1029-242X-2012-234
H. Cakalli, A variation on ward continuity. Filomat 27(8) (2013) 1545-1549.
https://doi.org/10.2298/FIL1308545C
H. Cakalli, Slowly oscillating continuity. Abstr. Appl. Anal., Hindawi Publ. Corp., New York, 2008 Article ID 485706, (2008). https://doi.org/10.1155/2008/485706
H. Cakalli, On -quasi-slowly oscillating sequences. Comput. Math. Appl. 62(9) (2011) 3567-3574.
https://doi.org/10.1016/j.camwa.2011.09.004
H. Cakalli, Forward continuity. J. Comput. Anal. Appl. 13(2) (2011) 225-230.
H. Cakalli, -quasi-Cauchy sequences. Math. Comput. Modelling 53(1-2) (2011) 397-401.
https://doi.org/10.1016/j.mcm.2010.09.010
H. Cakalli, A. Sonmez and C¸ .G. Aras, -statistically ward continuity. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 63(2) (2017) 313-321.
H. Cakalli and M. Albayrak, New type continuities via Abel convergence. The Scientific World Journal 2014 (2014) Article ID 398379, 6 pages. https://doi.org/10.1155/2014/398379
H. Cakalli and A. Sonmez, Slowly oscillating continuity in abstract metric spaces. Filomat 27(5) (2013) 925-930.
https://doi.org/10.2298/FIL1305925C
H. Cakalli, N -ward continuity. Abstr. Appl. Anal., Hindawi Publ. Corp., New York, 2012 Article ID 680456, (2012) 8 pp. https://doi.org/10.1155/2012/680456
H. Cakalli, Sequential definitions of compactness. Appl. Math. Lett. 21(6) (2008) 594-598. https://doi.org/10.1016/j.aml.2007.07.011
H. Cakalli, On G-continuity. Comput. Math. Appl. 61(2) (2011) 313-318. https://doi.org/10.1016/j.camwa.2010.11.006
H. Cakalli, M. Et and H. Sengul, A variation on N ward continuity. Georgian Mathematical Journal. https://doi.org/10.1515/gmj-2018-0037
I. Canak and M. Dik, New Types of Continuities. Abstr. Appl. Anal., Hindawi Publ. Corp., New York, 2010 Article ID 258980, (2010). https://doi.org/10.1155/2010/258980
P. Das, E. Savas and S. Kr. Ghosal, On generalizations of certain summability methods using ideals. Appl. Math. Lett. 24(9) (2011) 1509-1514. https://doi.org/10.1016/j.aml.2011.03.036
H. Fast, Sur la convergence statistique. Colloq. Math. 2 (1952) 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
J. Fridy, On statistical convergence. Analysis 5 (1985) 301-313. https://doi.org/10.1524/anly.1985.5.4.301
A. R. Freedman, J. J. Sember and M. Raphael, Some Cesaro-type summability spaces. Proc. London Math. Soc. 37(3) (1978) 508-520. https://doi.org/10.1112/plms/s3-37.3.508
A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence. Rocky Mountain J. Math. 32(1) (2002) 129-138. https://doi.org/10.1216/rmjm/1030539612
P. Kostyrko, T. Salat and W. Wilczynski, I−convergence. Real Anal. Exchange 26(2) (2000/2001) 669-686.
P. Kostyrko, M. Macaj, M. Sleziak and T. Salat, I-convergence and extremal I-limit points. Math. Slovaca 55(4) (2005) 443-464.
F. Nuray and W.H. Ruckle, Generalized statistical convergence and convergence free spaces. J. Math. Anal. Appl. 245(2) (2000) 513-527. https://doi.org/10.1006/jmaa.2000.6778
T. Salat, B.C. Tripathy and M. Ziman, On some properties of I-convergence. Tatra Mt. Math. Publ. 28(2) (2004) 279-286.
T. Salat, B.C. Tripathy and M. Ziman, On I-convergence field. Ital. J. Pure Appl. Math. 17 (2005) 45-54.
T. Salat, On statistically convergent sequences of real numbers. Math. Slovaca 30(2) (1980) 139-150.
E. Savas and P. Das, A generalized statistical convergence via ideals. Appl. Math. Lett. 24(6) (2011) 826-830.
https://doi.org/10.1016/j.aml.2010.12.022
H. Sengul, H. Cakallı and M. Et, N ( , I)− ward continuity. AIP Conference Proceedings 2086, 030038 (2019);
https://doi.org/10.1063/1.5095123
H. Sengul and M. Et, On ( , I)-statistical convergence of order of sequences of function. Proc. Nat. Acad. Sci. India Sect. A 88(2) (2018) 181-186. https://doi.org/10.1007/s40010-017-0414-1
H. Sengul and M. Et, On I-lacunary statistical convergence of order of sequences of sets. Filomat 31(8) (2017) 2403-2412. https://doi.org/10.2298/FIL1708403S
I. Taylan, Abel statistical delta quasi Cauchy sequences of real numbers. Maltepe Journal of Mathematics, 1(1) (2019) 18-23. https://doi.org/10.1063/1.5095128
B.C. Tripathy, B. Hazarika and B. Choudhary, Lacunary I-Convergent Sequences Kyungpook Math. J. 52(4) (2012) 473-482. https://doi.org/10.5666/KMJ.2012.52.4.473
R.W. Vallin, Creating slowly oscillating sequences and slowly oscillating continuous functions. With an appendix by Vallin and H. Cakalli, Acta Math. Univ. Comenianae 80(1) (2011) 71-78.
S. Yildiz, Lacunary statistical p-quasi Cauchy sequences. Maltepe Journal of Mathematics 1(1) (2019) 9-17.
https://doi.org/10.1063/1.5095130
S. Yildiz, Variations on lacunary statistical quasi Cauchy sequences. AIP Conference Proceedings 2086, 030045 (2019); https://doi.org/10.1063/1.5095130
Derechos de autor 2019 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).