Some modular relation on analogous of Ramanujan´´´'s remarkable product of theta-function

  • B. N. Dharmendra Maharani’s Science College for Women
  • M. C. Mahesh Kumar Government First Grade College
  • P. Nagendra Maharani's Science College for Women

Resumen

In this article, we derive new modular relations on Ramanujan's product of theta-functions $\phi(q)$ and $f(-q^2)$, which is analogous to Ramanujan's remarkable product of theta-functions and their explicit evaluations.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

M. C. Mahesh Kumar, Government First Grade College

Department of Mathematics

Citas

B. C. Berndt, Ramanujan's Notebooks, Part III, Springer Verlag, New York, 1991. https://doi.org/10.1007/978-1-4612-0965-2

B. C. Berndt, Ramanujan's Notebooks, Part IV, Springer-Verlag, New York, 1994. https://doi.org/10.1007/978-1-4612-0879-2

B. C. Berndt, Ramanujan's Notebooks, Part V, Springer-Verlag, New York, 1997.

B. C. Berndt, H. H. Chan and L. C. Zhang, Ramanujan's remarkable product of the theta-function, Proc. Edinburgh Math. Soc., 40 (1997), 583-612. https://doi.org/10.1017/S0013091500024032

B. N. Dharmendra, New Ramanujan's Remarkable Product of Theta-Function and Their Explicit Evaluations. Proc. Jangjeon Math. Soc. 22(4) (2019), 517-528.

N. D. Baruha, Modular Equations for Ramanujan's Cubic Continued Fraction,Journal of Mathematical Analysis and Applications, 268 (2002), 244-255. https://doi.org/10.1006/jmaa.2001.7823

M. S. Mahadeva Naika, Some theorems on Ramanujan's cubic continued fraction and related identities. Tamsui Oxf. J. Math. Sci. 24(3) (2008), 243-256.

M. S. Mahadeva Naika, S. Chandankumar and K. Sushan Bairy, New Identites for Ratios of Ramanujan's theta-function, Advanced Studies in Contempary Mathematics, 27(1) (2017), 131-146.

M. S. Mahadeva Naika, K. Sushan Bairy and S. Chandankumar, On Some Explicit evaluation of the ratios of Ramanujan's theta-function, Bull. Allahabad Math. Soc. 29(1) (2014) 53-86.

M. S. Mahadeva Naika and B. N. Dharmendra, On some new general theorems for the explicit evaluations of Ramanujan's remarkable product of theta-function Ramanujan J. 15(3) (2008), 349-366. https://doi.org/10.1007/s11139-007-9081-1

M. S. Mahadeva Naika, B. N. Dharmendra and S. Chandankumar, New Modular Relations for Ramanujan Parameter µ(q), IJPAM, 74(4) (2012), 413-435.

M. S. Mahadeva Naika, B. N. Dharmendra and K. Shivashankara, On some new explicit evaluations of Ramanujan's remarkable product of theta-function, South East Asian J. Math. Math. Sci. 5(1) (2006), 107-119 .

M. S. Mahadeva Naika and M. C. Maheshkumar, Explicit evaluations of Ramanujan's remarkable product of thetafunction, Adv. Stud. Contemp. Math., 13(2) (2006), 235-254.

M. S. Mahadeva Naika, M. C. Maheshkumar and K. Sushan Bairy, General formulas for explicit evaluations of Ramanujan's cubic continued fraction, Kyungpook Math. J., 49(3) (2009), 435-450. https://doi.org/10.5666/KMJ.2009.49.3.435

M. S. Mahadeva Naika, M. C. Maheshkumar and K. Sushan Bairy, On some remarkable product of theta-function, Aust. J. Math. Anal. Appl., 5(1) (2008), 1-15. https://doi.org/10.1007/s11139-007-9081-1

Nipen Saikia, Some Properites, Explicit Evaluation, and Applications of Ramanujan's Remarkable Product of ThetaFunctions, Acta Math Vietnam, Journal of Mathematics, DOI 10.1007/s40306-014-0106-8, (2015). https://doi.org/10.1007/s40306-014-0106-8

S. Y. Kang, Some theorems on the Rogers-Ramanujan continued fraction and associated theta function identities in Ramanujan's lost notebook. Ramanujan J., 3 (1) (1999), 91-11.

S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.

S. Ramanujan, The lost notebook and other unpublished papers, Narosa, New Delhi, 1988.

Publicado
2022-02-07
Sección
Proceedings