A note on strong form of fuzzy soft pre-continuity
Resumen
We adapt strong θ−pre-continuity into fuzzy soft topology and investigate its properties. Also, the relations with the other types of continuities in fuzzy soft topological spaces are analized. Moreover, we give some new definitions.
Descargas
Citas
A. M. Abd El-Latif and A. H. Rodyna, Fuzzy soft pre-connected properties in fuzzy soft topological spaces, South Asian J. Math. 5 5 (2015) 202-213. DOI: https://doi.org/10.18576/msl/050112
B. Ahmad and A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst. (2009) Article ID 586507 doi:10.1155/2009/586507. DOI: https://doi.org/10.1155/2009/586507
T. M. Al-shami, Lj. D. R. Kocinac, The equivalence between the enriched and extended soft topologies. Appl. Comput. Math. 18 2 (2019) 149-162.
C. G. Aras, A. Sonmez, H. C¸ akallı, An approach to soft functions, J. Math. Anal. 8 2 (2017) 129-138.
S. Atmaca and I. Zorlutuna, On fuzzy soft topological spaces, Ann. Fuzzy Math. Inform. 5 2 (2013) 377-386.
A. Aygunoglu and H. Aygun, Introduction to fuzzy soft groups, Comput. Math. Appl. 58 6 (2009) 1279-1286. DOI: https://doi.org/10.1016/j.camwa.2009.07.047
B. Bora, On Fuzzy Soft Continuous Mapping, International J. for Basic Sciences and Social Sciences, (IJBSS)1 2 (August-2012) 50-64.
H. Cakalli and Pratulananda Das, Fuzzy compactness via summability, Appl. Math. Lett. 22 11 (2009) 1665-1669. DOI: https://doi.org/10.1016/j.aml.2009.05.015
A. E. Coskun, C. G Aras, H. Cakalli, and A. Sonmez, Soft matrices on soft multisets in an optimal decision process, AIP Conference Proceedings, 1759 1 020099 (2016); doi:10.1063/1.4959713 DOI: https://doi.org/10.1063/1.4959713
S. Du, Q. Qin, Q. Wang, B. Li, Fuzzy description of topological relations I: a unified fuzzy 9-intersection model, Proceedings of the 1st International Conference on Advances in Natural Computation (ICNC1705), vol. 3612 of Lecture Notes in Computer Science, Changsha, China, (August, 2005) 1261-1273. DOI: https://doi.org/10.1007/11539902_161
M. J. Egenhofer, R.D. Franzosa, Point-set topological spatial relations, International Journal of Geographical Information Systems, 5 2 (1991) 161-174. DOI: https://doi.org/10.1080/02693799108927841
M. J. Egenhofer, J.R. Herring, Categorizing binary toplogical relations between regions, lines and points in geographic databases, Tech. Rep., Department of Surveying Engineering, University of Maine, Orono, USA, (1991).
S. Hussain, On some generalized structures in fuzzy soft topological spaces, Inf. Sci. Lett. 4 3 (2015) 107-115.
A. Kharal, B.Ahmad, Mappings on Fuzzy Soft Classes, Adv. Fuzzy Syst. Article ID 407890 (2009). DOI: https://doi.org/10.1155/2009/407890
P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, J. Fuzzy Math. 203 2 (2001) 589-602.
D. A. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 4-5 (1999) 19-31. DOI: https://doi.org/10.1016/S0898-1221(99)00056-5
P. Mukherjee, R. P. Chakraborty, C. Park, Fuzzy Soft θ- Closure Operator in Fuzzy Soft Topological Spaces, Electronic Journal of Mathematical Analysis and Applications. 3 2 (2015) 227-236.
T. Noiri, Strongly θ-precontinuous functions, Acta Math. Hungar. 90 4 (2001) 307-316. DOI: https://doi.org/10.1023/A:1010683130720
I. Osmano˘glu, D. Tokat, Compact fuzzy soft spaces, Ann. Fuzzy Math. Inform. 7 1 (2014) 45-51.
B.P. Varol and H. Aygun, Fuzzy soft topology, Hacet. J. Math. Stat. 41 3 (2012) 407-419.
A. Ponselvakumari and R. Selvi, A Note on Fuzzy Soft Pre-Continuity, Adv. Fuzzy Math. 12 3 (2017) 347-359.
S. E. Rodabaugh, Powerset Operator Foundations For Poslat Fuzzy Set Theories and Topologies, Chapter 2 in Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, U. H¨ohle and S.E. Rodabaugh eds. (Kluwer Academic Publishers. (1999) 91-116. DOI: https://doi.org/10.1007/978-1-4615-5079-2_3
A. R. Roy and P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Comput. App. Math. 203 2 (2007) 412-418. DOI: https://doi.org/10.1016/j.cam.2006.04.008
S. Roy and T. K. Samanta, A note on fuzzy soft topological spaces, Ann. Fuzzy Math. Inform. 3 2 (2011) 305-311.
S. Saleh, A. M. Abd EL-Latif, Amany AL-Salemi, On separation axioms in fuzzy soft topological spaces, South Asian J. Math. 8 2 (2018) 92-102.
B. Tanay and M. B. Kandemir, Topological structures of fuzzy soft sets, Comput. Math. Appl. 61 (2011) 2952-2957. DOI: https://doi.org/10.1016/j.camwa.2011.03.056
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
A. Zahedi Khameneh, A. Kılı¸cman, A.R. Salleh, Fuzzy Product Topology, Ann. Fuzzy Math. Inform. 7 6 (2014) 935-947.
Derechos de autor 2022 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).