Generalized B\'{e}zier curves based on Bernstein-Stancu-Chlodowsky type operators
Resumen
In this paper, we use the blending functions of Bernstein-Stancu-Chlodowsky type operators with shifted knots for construction of modified Chlodowsky B\'{e}zier curves. We study the nature of degree elevation and degree reduction for B\'{e}zier Bernstein-Stancu-Chlodowsky functions with shifted knots for $t \in [\frac{\gamma}{n+\delta},\frac{n+\gamma}{n+\delta}]$. We also present a de Casteljau algorithm to compute Bernstein B\'{e}zier curves with shifted knots. The new curves have some properties similar to B\'{e}zier curves. Furthermore, some fundamental properties for Bernstein B\'{e}zier curves are discussed. Our generalizations show more flexibility in taking the value of $\gamma$ and $\delta$ and advantage in shape control of curves. The shape parameters give more convenience for the curve modelling.
Descargas
Citas
Ali Aral, Onurokten and Tuncer Acar, A note on bernstein-stancu-chlodowsky operators, Kirikkale University, Faculty of Science and Arts, Department of Mathematics, YahSihan, Kirikkale, Turkey, 2012.
S. Bernstein, Demonstration du theoreme de Weierstrass fonde sur le calcul de probabilites. Commun. Soc. Math. Kharkow, 13 (1) (1912) 1-2.
P. E. Bezier, Numerical Control-Mathematics and applications, John Wiley and Sons, London, 1972.
P. De Casteljau, Outillage Methodes Calcul, Citroen, 1959.
I. Chlodowsky, Sur le developpment des fonctions defines dans un interval infinien series de polynomes de S.N. Bernstein, Compositio Math. 4 (1937) 380-392.
Cetin Disibuyuk, and Halil Oruc, Tensor Product q-Bernstein Polynomials, BIT Numerical Mathematics, Springer 48 (2008) 689-700. https://doi.org/10.1007/s10543-008-0192-x
Cetin Disibuyuk, Tensor Product q -Bernstein Be'zier Patches, Lecture Notes in Computer Science, 2009. https://doi.org/10.1007/978-3-642-00464-3_28
Rida T. Farouki and V. T. Rajan, Algorithms for polynomials in Bernstein form, Computer Aided Geometric Design, 5 (1) 1988. https://doi.org/10.1016/0167-8396(88)90016-7
A. D. Gadjiev and A. M. Ghorbanalizadeh, Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables, Appl. Math. Comput. 216 (3) (2010) 890-901. https://doi.org/10.1016/j.amc.2010.01.099
A. R. Gairola, Deepmala and L. N. Mishra, On the q−derivatives of a certain linear positive operators, Iranian Journal of Science & Technology, Transactions A: Science (2017). https://doi.org/10.1007/s40995-017-0227-8
R. B. Gandhi, Deepmala and V. N. Mishra, Local and global results for modified Szasz - Mirakjan operators, Math. Method. Appl. Sci. (2016), https://doi.org/10.1002/mma.4171
Li-Wen Hana, Ying Chua and Zhi-Yu Qiu, Generalized Bezier curves and surfaces based on Lupas q-analogue of Bernstein operator, Journal of Computational and Applied Mathematics 261 (2014) 352-363. https://doi.org/10.1016/j.cam.2013.11.016
Khalid Khan, D. K. Lobiyal and Adem Kilicman, A de Casteljau Algorithm for Bernstein type Polynomials based on (p, q)-integers, arXiv 1507.04110 (2015).
Khalid Khan and D. K. Lobiyal, Bezier curves based on Lupas (p, q)-analogue of Bernstein functions in CAGD, Journal of Computational and Applied Mathematics 317 (2017) 458-477. https://doi.org/10.1016/j.cam.2016.12.016
Kejal Khatri and V. N. Mishra, Generalized Sz'asz-Mirakyan operators involving Brenke type polynomials, Applied Mathematics and Computation 324 (2018) 228-238. https://doi.org/10.1016/j.amc.2017.11.049
P. P. Korovkin, Linear operators and approximation theory, Hindustan Publishing Corporation, Delhi, 1960.
A. Lupas, A q-analogue of the Bernstein operator, Seminar on Numerical and Statistical Calculus, University of ClujNapoca 9 (1987) 85-92.
N. I. Mahmudov and P. Sabancgil, Some approximation properties of Lupas q-analogue of Bern- stein operators, arXiv:1012.4245v1 [math.FA] 20 Dec 2010.
V. N. Mishra and R. B. Gandhi, Simultaneous approximation by Szasz-Mirakjan-Stancu-Durrmeyer type operators, Periodica Mathematica Hungarica 74 (1) (2017) 118-127. https://doi.org/10.1007/s10998-016-0145-0
V. N. Mishra, K. Khatri, L. N. Mishra and Deepmala, Inverse result in simultaneous approximation by BaskakovDurrmeyer-Stancu operators, Journal of Inequalities and Applications (2013) 2013:586. https://doi.org/10.1186/1029-242X-2013-586
V. N. Mishra, R. B. Gandhi and F. Nasaireh, Simultaneous approximation by Szasz-Mirakjan-Durrmeyer-type operators, Bollettino dell'Unione Matematica Italiana 8 (4) (2016) 297-305. https://doi.org/10.1007/s40574-015-0045-x
M. Mursaleen, K. J. Ansari and A. Khan, On (p, q)-analogue of Bernstein Operators, Applied Mathematics and Computation, 266 (2015) 874-882. https://doi.org/10.1016/j.amc.2015.04.090
M. Mursaleen, K. J. Ansari and Asif Khan, Some Approximation Results by (p, q)-analogue of Bernstein-Stancu Operators, Applied Mathematics and Computation, 264 (2015) 392-402. https://doi.org/10.1016/j.amc.2015.03.135
M. Mursaleen and Asif Khan, Generalized q-Bernstein-Schurer Operators and Some Approximation Theorems, Journal of Function Spaces and Applications Volume 2013, Article ID 719834, 7 pages https://doi.org/10.1155/2013/719834
Halil Oruk and George M. Phillips, q-Bernstein polynomials and Be'zier curves, Journal of Computational and Applied Mathematics 151 (2003) 1-12. https://doi.org/10.1016/S0377-0427(02)00733-1
Sofiya Ostrovska, On the Lupas q-analogue of the Bernstein operator, Rocky mountain journal of mathematics 36 (5) 2006. https://doi.org/10.1216/rmjm/1181069386
G. M. Phillips, Bernstein polynomials based on the q-integers,The heritage of P. L. Chebyshev, Ann. Numer. Math., 4 (1997) 511-518.
G. M. Phillips, A survey of results on the q-Bernstein polynomials, IMA Journal of Numerical Analysis, 2009. https://doi.org/10.1093/imanum/drn088
Thomas W. Sederberg, Computer Aided Geometric Design Course Notes, Department of Computer Science Brigham Young University, October 9, 2014.
Derechos de autor 2022 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).
Funding data
-
Department of Atomic Energy, Government of India
Grant numbers DAE Ref. Number: 2/40(58)/2015/R&DII/13262 -
National Board for Higher Mathematics