Supercyclicity of multiplication on Banach ideal of operators

  • Mohamed AMOUCH University Chouaib Doukkali
  • hamza Lakrimi Chouaib Doukkali University

Resumo

Let X be a complex Banach space with dim X > 1 such that its topological dual X∗ is separable and B(X) the algebra of all bounded linear operators on X. In this paper, we study the passage of property of being supercyclic from T ∈ B(X) to the left and the right multiplication induced by T on an admissible Banach ideal of B(X). Also, we give a sufficient conditions for the tensor product T ⊗bR of two operators on B(X) to be supercyclic.

Downloads

Não há dados estatísticos.

Referências

Bayart, F., Matheron, E., Dynamics of Linear Operators. Cambridge University Press, (2009). https://doi.org/10.1017/CBO9780511581113

Bermudez, T., Bonilla, A., Peris, A., On hypercyclicity and supercyclicity criteria. Bull. Austral. Math. Soc. 70(1), 45-54, (2004). https://doi.org/10.1017/S0004972700035802

Bes, J. P., Three problems on hypercyclic operators. PhD, Bowling Green State University, Bowling Green, OH, USA, (1998).

Bonet, J., Mart'ınez-Gim'enez, F., Peris, A., Universal and chaotic multipliers on spaces of operators. J. Math. Anal. Appl. 297(2), 599-611, (2004). https://doi.org/10.1016/j.jmaa.2004.03.073

Chan, K. C., Taylor, R. D., Hypercyclic subspaces of a Banach space. Integral Equ. Oper. Theory. 41(4), 381-388, (2001). https://doi.org/10.1007/BF01202099

Defant, A., Floret, K., Tensor Norms and Operator Ideals. North-Holland, Amsterdam, (1993).

Feldman, N. S., Hypercyclic and supercyclic for invertible bilateral weighted shifts. J. Math. Analysis and Appl. 1, 67-74, (2001).

Gethner, R. M., Shapiro, J.H., Universal vectors for operators on spaces of holomorphic functions. Proceedings of the American Mathematical Society. 100(2), 281-288, (1987). https://doi.org/10.1090/S0002-9939-1987-0884467-4

Gilmore, C., Dynamics of Generalised Derivations and Elementary Operators. Complex Analysis and Operator Theory. 13(1), 257-274, (2019). https://doi.org/10.1007/s11785-018-0774-9

Gilmore, C., Saksman, E., Tylli, H. O., Hypercyclicity properties of commutator maps. Integral Equations and Operator Theory. 87(1), 139-155, (2017). https://doi.org/10.1007/s00020-016-2332-z

Gohberg, I., Kreın, M. G., Introduction to the Theory of Linear Non self adjoint Operators. Amer. Math. Soc. 18, (1978).

Grosse-Erdmann, K. G., Universal families and hypercyclic operators. Bulletin of the American Mathematical Society. 36(3), 345-381, (1999). https://doi.org/10.1090/S0273-0979-99-00788-0

Gupta, M., Mundayadan, A., Supercyclicity in spaces of operators. Results in Mathematics. 70(1), 95-107, (2016). https://doi.org/10.1007/s00025-015-0463-1

Jarchow, H., Locally Convex Spaces. B.G. Teubner, Stuttgart. MR 83h. 46008, (1981). https://doi.org/10.1007/978-3-322-90559-8

Kitai, C., Invariant closed sets for linear operators. Ph.D. thesis, University of Toronto, Toronto, (1982).

Martınez-Gimenez, F., Peris, A., Universality and chaos for tensor products of operators. J. Approx. Theory. 124, 7-24, (2003). https://doi.org/10.1016/S0021-9045(03)00118-7

Montes-Rodrıguez, A., Romero-Moreno, M. C., Supercyclicity in the operator algebra. Studia Math. 150 (3), 201-213, (2002). https://doi.org/10.4064/sm150-3-1

Montes-Rodrıguez, A., Salas, H. N., Supercyclic subspaces: spectral theory and weighted shifts. Advances in Mathematics. 163(1), 74-134, (2001). https://doi.org/10.1006/aima.2001.2001

Rolewics, S., On orbits of elements. Studia Mathematica. 32, 17-22, (1969). https://doi.org/10.4064/sm-32-1-17-22

Ryan, R. A., Introduction to tensor products of Banach spaces. Springer Science & Business Media, (2013).

Salas, H., Supercyclicity and weighted shifts. Studia Math. 135(1), 55-74, (1999). https://doi.org/10.4064/sm-135-1-55-74

Yousefi, B., Rezaei, H., Doroodgar, J., Supercyclicity in the operator algebra using Hilbert-Schmidt operators. Rendiconti del Circolo Matematico di Palermo. 56(1), 33-42, (2007). https://doi.org/10.1007/BF03031426

Publicado
2022-02-05
Seção
Proceedings