Bi-derivations and quasi-multipliers on module extensions Banach algebras

Resumen

This paper characterize two bi-linear maps bi-derivations and quasi-multipliers on the module extension Banach algebra $A\oplus_1 X$, where $A$ is a Banach algebra and $X$ is a Banach $A$-module. Under some conditions, it is shown that if every bi-derivation on $A\oplus_1 A$ is inner, then the quotient group of bounded bi-derivations and inner bi-derivations, is equal to space of quasi-multipliers of $A$. Moreover, it is proved that $\mathrm{QM}(A \oplus_1 A)=\mathrm{QM}(A)\oplus (\mathrm{QM}(A)+\mathrm{QM}(A)')$, where $\mathrm{QM}(A)'=\{m\in \mathrm{QM}(A):m(0,a)=m(a,0)=0\}$.

Descargas

La descarga de datos todavía no está disponible.

Citas

A. Alinejad and M. Rostami, Quasi-multipliers on Banach algebras related to locally compact semigroups, Semigroup Forum, 100, 651-661, (2020). DOI: https://doi.org/10.1007/s00233-019-10026-z

C. A. Akemanna and G. K. Pedersen, Complications of semi-continuity in C-algebra theory, Duke Math. J. 40, 785-795, (1973). DOI: https://doi.org/10.1215/S0012-7094-73-04070-2

A. Bagheri Vakilabad, K. Haghnejad Azar and A. Jabbari, Arens regularity of module actions and weak amenability of Banach algebras, Period. Math. Hung., 71(2), 224-235, (2015). DOI: https://doi.org/10.1007/s10998-015-0103-2

D. Benkovic, Biderivations of triangular algebras, Linear Algebra Appl. 431, 1587-1602, (2009). DOI: https://doi.org/10.1016/j.laa.2009.05.029

A. Bodaghi and A. Jabbari, n-Weak module amenability of triangular Banach algebras, Math. Slovaca, 65(3), 645-666, (2015). DOI: https://doi.org/10.1515/ms-2015-0045

M. Bresar, W. S. Martindale and C.R. Miers, Centralizing maps in prime rings with involution, J. Algebra, 161, 342-357, (1993). DOI: https://doi.org/10.1006/jabr.1993.1223

M. Bresar, On certain pairs of functions of semiprime rings, Proc. Amer. Math. Soc. 120, 709-713, (1994). DOI: https://doi.org/10.1090/S0002-9939-1994-1181158-3

H. G. Dales, Banach algebras and Automatic Continuity, London Math. Society Monographs, Volume 24, Clarendon Press, Oxford, 2000.

M. Daws, Multipliers, self-induced and dual Banach algebras, Dissert. Math. 470, 1-62, (2010). DOI: https://doi.org/10.4064/dm470-0-1

Y. Du and Y. Wang, Biderivations of generalized matrix algebras, Linear Algebra Appl. 438, 4483-4499, (2013). DOI: https://doi.org/10.1016/j.laa.2013.02.017

A. Ebadian and A. Jabbari, Weak -continuous derivations on module extension of dual Banach algebras, Southeast Asian Bull. Math. 39(3), 347-363, (2015).

A. Erfanian Attar, S. Barootkoob and H.R. Ebrahimi Vishki, On Extension of bi-derivations to the bidual of Banach algebras, Filomat, 30(8), 2261-2267, (2016). DOI: https://doi.org/10.2298/FIL1608261E

M. Eshaghi Gordji, F. Habibian and A. Rejali, Module extension of dual Banach algebras, Bull. Korean Math. Soc. 47(4), 663-673, (2010). DOI: https://doi.org/10.4134/BKMS.2010.47.4.663

B. E. Forrest and L. W. Marcoux, Derivations of triangular Banach algebras, Indiana Univ. Math. J. 45, 441-462, (1996). DOI: https://doi.org/10.1512/iumj.1996.45.1147

B. E. Forrest and L. W. Marcoux, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc. 354, 1435-1452, (2002). DOI: https://doi.org/10.1090/S0002-9947-01-02957-9

B. E. Forrest and L. W. Marcoux, Second order cohomology of triangular Banach algebras, Houston J. Math. 30(4), 1157-1176, (2004).

N. M. Ghosseiri, On biderivations of upper triangular matrix rings, Linear Algebra Appl. 438, 250-260, (2013). DOI: https://doi.org/10.1016/j.laa.2012.07.039

A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Translated from the Russian by A. West. Mathematics and its Applications (Soviet Series) 41, Kluwer Academic Publishers Group, Dordrecht, 1989. DOI: https://doi.org/10.1007/978-94-009-2354-6

A. Jabbari and H. Hosseinzadeh, Second order (σ, τ)-cohomology of triangular Banach algebras, U. P. B. Sci. Bull., Series A, 75(3), 59-66, (2013).

M. Khosravi, M. S. Moslehian and A. N. Motlagh, Vanishing of the first (σ, τ)-cohomollogy group of triangular Banach algebras, Meth. Funct. Anal. Top., 14(4), 351-360, (2008).

K. Mckennon, Continuous convergence and the spectrum of a C-algebra, General Topology Appl. 5, 249-262, (1975). DOI: https://doi.org/10.1016/0016-660X(75)90024-0

K. Mckennon, Quasi-multipliers, Trans. Amer. Math. Soc. 233, 105-123, (1977). DOI: https://doi.org/10.1090/S0002-9947-1977-0458173-2

A. R. Medghalchi and H. Pourmahmood-Aghababa, On module extension Banach algebras, Bull. Iran. Math. Soc. 37(4), 171-183, (2011).

A. R. Medghalchi and H. Pourmahmood-Aghababa, The first cohomology group of module extension Banach algebras, Rocky Mount. J. Math., 41(5), 1639-1651, (2011). DOI: https://doi.org/10.1216/RMJ-2011-41-5-1639

A. R. Medghalchi and M. H. Sattari, Biflatness and biprojectivity of triangular Banach algebras, Bull. Iran. Math. Soc. 34(2), 115-120, (2008).

A. R. Medghalchi, M. H. Sattari and T. Yazdanpanah, Amenability and weak amenability of triangular Banach algebras, Bull. Iran. Math. Soc., 31(2), 57-69, (2005).

M. S. Moslehian, On (co)homology of triangular Banach algebras, Banach Center Publ. 67, 271-276, (2005). DOI: https://doi.org/10.4064/bc67-0-22

V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, Vol. 1774, Springer-Verlag, Berlin, 2002. DOI: https://doi.org/10.1007/b82937

Y. Zhang, Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc. 354, 4131-4151, (2002). DOI: https://doi.org/10.1090/S0002-9947-02-03039-8

Y. Zhao, D. Wang and R. Yao, Biderivations of upper triangular matrix algebras over commutative rings, Int. J. Math. Game Theory Alg. 18, 473-478, (2009).

Publicado
2022-12-26
Sección
Articles