Study to the Resonance of $ p $-Laplacian problem with mixed boundary

Resumen

In this work, we are interested at the existence of nontrivial solutions for a nonlinear elliptic problems with resonance part and mixed boundary conditions. Our approach is variational and is based on the well known Landesman-Laser type conditions.

Descargas

La descarga de datos todavía no está disponible.

Citas

G. A. Afrouzi, M. Mirzapour, A. Hadjian, S. Shakeri, Existence of solutions of weak solutions for a semilinear problem with a nonlinear boundary condition, Bulletin of Mathematical Analysis and Applications, Volume 3 Issue 3(2011), Pages 109-114.

C. O. Alves, P. C. Carriao, O. H. Miyagaki, Multiple solutions for a problem with resonance involving the p-laplacian, Abstr. Appl. Anal, volume 3, number 1-2 (1998), 191-210. DOI: https://doi.org/10.1155/S1085337598000517

A. Anane, O. Chakron, B. Karim, A. Zerouli, Existence of solution for a resonant Steklov Problem, Bol.Soc. Paranaense de Mat.(3s) v.27 1 (2009) 87-90. DOI: https://doi.org/10.5269/bspm.v27i1.9070

A. Anane, J. P. Gossez, Strongly nonlinear elliptic problems near resonance a variational approach, Comm. Partial Diff Eqns, 15 (1990), 1141-1159. DOI: https://doi.org/10.1080/03605309908820717

D. Arcoya, L. Orsina, Landesman-Lazer conditions and quasilinear elliptic equations, Nonlinear Analysis, Theory, Methods and Applications. v.28 N 10 (1997) 1623-1632. DOI: https://doi.org/10.1016/S0362-546X(96)00022-3

P. Drabek, S. B. Robinson, Resonance Problems for the p-Laplacian, Journal of Functional Analysis. 169,(1999) 189-200. DOI: https://doi.org/10.1006/jfan.1999.3501

El. M. Hssini, M. Massar, M. Talbi and N. Tsouli, Existence of solutions for a fourth order problem at resonance, Bol. Soc. Paran. Mat. (3s.) v. 32 2 (2014): 133–142. DOI: https://doi.org/10.5269/bspm.v32i2.18216

G. Li, H. Liu, B. Cheng, Eigenvalue problem for p-Laplacian with mixed boundary conditions, Mathematical Sciences 2013, 7:8 DOI: https://doi.org/10.1186/2251-7456-7-8

J. L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin, 1972. DOI: https://doi.org/10.1007/978-3-642-65217-2

L. Li, Chun-Lei. Tang, Infinitely many solutions for resonance elliptic systems, C. R. Acad. Sci. Paris, Ser. I 353 (2015) 35–40. DOI: https://doi.org/10.1016/j.crma.2014.10.010

P. H. Rabinowitz, Some minimax theorems and applications to partial differential equations, Nonlinear Analysis: A collection of papers honor of Erich Rothe. Academic press, New York, 1978, pp. 161-177. DOI: https://doi.org/10.1016/B978-0-12-165550-1.50016-1

Publicado
2022-12-26
Sección
Articles