$q$-analogue of a class of harmonic functions

Resumen

The purpose of the present paper is to introduce a new subclass of harmonic univalent functions associated with a $q$-Ruscheweyh derivative operator. A necessary and sufficient convolution condition for the functions to be in this class is obtained. Using this necessary and sufficient coefficient condition, results based on the extreme points, convexity and compactness for this class are also obtained.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Omendra Mishra, Rajat P. G. College

Department of Mathematics

Citas

A. Aral, V. Gupta and R. P. Agarwal, Applications of q-calculus in operator theory, Springer, New York, (2013). DOI: https://doi.org/10.1007/978-1-4614-6946-9

J. Dziok, Classes of harmonic functions associated with Ruscheweyh derivatives , Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat. RACSAM 113, 1315-1329, (2019). DOI: https://doi.org/10.1007/s13398-018-0542-8

J. Dziok, M. Darus, J. Sokol and T. Bulboaca, Generalizations of starlike harmonic functions, C. R. Math. Acad. Sci. Paris 354, 13-18, (2016). DOI: https://doi.org/10.1016/j.crma.2015.08.001

P. Duren, Harmonic mappings in the plane, Cambridge university Press, Cambridge, (2004). DOI: https://doi.org/10.1017/CBO9780511546600

P. Duren, W. Hengartner and R. S. Laugesen, The argument principle for harmonic functions, Amer. Math. Monthly 103, 411-415, (1996). DOI: https://doi.org/10.1080/00029890.1996.12004761

M. Govindaraj and S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math 43, 475-487, (2017). DOI: https://doi.org/10.1007/s10476-017-0206-5

S. Hussain, S. Khan, M. A. Zaighum and M. Darus, Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator, AIMS Mathematics 2, 622-634, (2017). DOI: https://doi.org/10.3934/Math.2017.4.622

M. E. H. Ismail, E. Merkes and D. Styer, A generalizations of starlike functions, Complex Variables Theory Appl. 14, 77-84, (1990). DOI: https://doi.org/10.1080/17476939008814407

F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh 46, 253-281, (1909). DOI: https://doi.org/10.1017/S0080456800002751

F. H . Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41, 193-203, (1910).

J. M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl. 235, 470-477, (1999). DOI: https://doi.org/10.1006/jmaa.1999.6377

J. M. Jahangiri, N. Magesh and C. Murugesan, certain classes of harmonic univalent functions defined by subordination, Journal of fractional calculus and Applications 8, 88-100, (2017).

J. M. Jahangiri, Harmonic univalent functions defined by q-calculus operator, International J. Math. Anal. Appl 5, 39-43, (2018).

S. Kanas and D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca 64, 1183-1196, (2014). DOI: https://doi.org/10.2478/s12175-014-0268-9

H. Lewy, On the non vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc 42, 689-692, (1936). DOI: https://doi.org/10.1090/S0002-9904-1936-06397-4

S. Mahmood and J. Sokol, New subclass of analytic functions in conical domain associated with Ruscheweyh qdifferential operator, Results Math 71, 1345-1357, (2017). DOI: https://doi.org/10.1007/s00025-016-0592-1

G. Murugusundaramoorthy and K. Vijaya, On certain classes of harmonic functions involving Ruscheweyh derivatives, Bull. Cal. Math. Soc 96, 99-108, (2004).

G. Murugusundaramoorthy and J. M. Jahangiri, New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Khayyam J. Math 5, 79-88, (2019).

Saurabh Porwal and Ankita Gupta, An application of q- calculus to harmonic univalent functions, J. Qual. Measurement Anal 14, 81-90, (2018).

B. Ravindar and R. B. Sharma and N. Magesh, On a subclass of harmonic univalent functions defined by Ruscheweyh q- differential operator, AIP Conference Proceedings 2112, (2019). DOI: https://doi.org/10.1063/1.5112203

B. Ravindar and R. B. Sharma and N. Magesh, On a certain subclass of harmonic univalent functions defined qdifferential operator, J. Mech. Cont. Math. Sci 14, 45-53, (2019). DOI: https://doi.org/10.26782/jmcms.2019.12.00004

P. Sharma and O. mishra, A class of harmonic functionc associated with q Salagean operator, U.P.B. Sci. Bull., Series A 82, (2020).

St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc 49, 109-115, (1975). DOI: https://doi.org/10.1090/S0002-9939-1975-0367176-1

Lisbeth E. Schaubroeck, Subordination of planer harmonic functions, Compl. Variables Theory Appl 41, 163-178, (2000). DOI: https://doi.org/10.1080/17476930008815245

Publicado
2022-12-23
Sección
Articles