Maximum number of limit cycles of a second order differential system

Resumen

In this paper, we study the limit cycles of a perturbed differential in $\mathbb{R} ^2$, given by \begin{equation*} \left\{ \begin{array}{ccl} \overset{.}{x} &=& y ,\\ \overset{.}{y} &=& -x-\epsilon (1+\sin^n (\theta) \cos^m (\theta))H(x,y), \end{array} \right. \end{equation*} where $\epsilon$ is a small parameter, $m$ and $n$ are non-negative integers, $\tan(\theta)=y/x$, and $P(x,y)$ is a real polynomial of degree $n \geq 1$. Using Averaging theory of first order we provide an upper bound for the maximum number of limit cycles. Also, we provide some examples to confirm and illustrate our results.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Abdallah Brik, University 20 August 1955

Department of Mathematics

Amel Boulfoul, University 20 August 1955

Department of Mathematics

Citas

I. S. Berezin and N. P. Zhidkv, Computing Methods, vol. II, Pergamon Press, Oxford, 1964.

A. Boulfoul, N. Mellahi, Limit cycles of Liénard polynomial systems type by averaging method, Moroccan J. of Pure and Appl. Anal., (2020), Volume 6(1),1-15.

A. Buica and J. Llibre, Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math. 128 (2004) 7-22.

T. Chen and J. Llibre, Limit cycles of a second-order differential equation, Appl. Math. Lett. 88 (2019) 111-117.

N. Debz, A. Boulfoul and A. Berkane, Limit cycles of a class of planar polynomial differential systems, Math. Meth. Appl. Sci.,44(2021),13592-13614.

J. Llibre, A .C. Mereu and M. A. Teixeira, Limit cycles of the generalized polynomial Liénard differential equations, Math. Proc. Camb. Phil. Soc., 148 (2010), 363-383.

É. Mathieu, Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique, J. Math. Pures Appl. 13 (1868)137-203.

H. Poincaré, Mémoire sur les courbes définies par une équation différentielle I, II, J. Math. Pures Appl. 7 (1881) 375-422; 8 (1882) 251-296.

J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, Vol 59, Springer, Berlin, 1985.

D. Zwillinger, Table of Integrals, Series and Products, 2014, ISBN: 978-0-12-384933-5.

Publicado
2024-05-21
Sección
Research Articles