On some closed-form evaluations for the generalized hypergeometric function
Resumen
The main objective of this note is to provide eight closed-form evaluations for the generalized hypergeometric function with argument $1$ and this is achieved by means of separating a generalized hypergeometric function into even and odd components together with the use of two known sums involving binomial and reciprocal of the certain binomial coefficients obtained recently by Sofo.
Descargas
Citas
Andrews G. E., Askey, R., and Roy R., Special Functions, Cambridge University Press, Cambridge, 2000.
Bailey, W. N., Generalized Hypergeometric Series, Cambridge University Press, Cambridge 1935; Reprinted by StechertHafner, New York, 1964.
Mansour, T. Combinatorial identities and inverse binomial coefficients, Adv. Appl. Math., 28, 196-202, 2002.
Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W., (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010.
Pla, J., The sum of inverses of binomial coefficients revisited, Fibonacci Quart., 35, 342-345, 1997.
Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I., More Special Functions: Integrals and Series; Vol. 3, Gordon and Breach Science Publishers; Amsterdum, The Netherlands, 1990.
Raniville, E. D., Special Functions, The Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, NY, 1971.
Rockett, A. M., Sums of the inverses of binomial coefficients, Fibonacci, Quart., 19, 433-437, 1981.
Slater, L. J., Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1960.
Sofo, A., General properties involving reciprocals of Binomial coefficients, Journal of integer sequences, 9, Article 06.4.5, 2006.
Sofo. A., Some properties of reciprocals of double binomial coefficients, Tamsui Oxford J. Math., Sci.,25(2), 141-151, 2009.
Sury, B., Sum of the reciprocals of the binomial coefficients, European J. Combin., 14, 551-535, 1933.
Sury, B. Wang T. and Zhao, F. Z., Identities involving reciprocals of binomial coefficients, Journal of Integer Sequences, 7, Article 04.2.8, 2004.
Trif, T., Combinatorial sums and series involving inverse of binomial coefficients, Fibonacci Quart., 38, 79-84, 2000.
Zhao F. and Wang, T., Some results for sums of the inverse of binomial coefficients, Integers, Electronic Journal of Combinatorial Number Theory, 5(1), 22, 2005.
Derechos de autor 2024 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).