The multiplicity of solutions for the critical problem involving the fracional p-Laplacian operator

Resumen

This paper deals with the existence of multiple solutions

for the following critical fractional $p$-Laplacian problem

\begin{equation*}

\left\{

\begin{array}{l}

\mathbf{(-}\Delta \mathbf{)}_{p}^{s}u(x)=\lambda \left\vert u\right\vert

^{p-2}u+f(x,u)+\mu g(x,u)\ \text{in }\Omega ,u>0, \\

\\

u=0\text{ on}\ \mathbb{R}^{n}\setminus \Omega ,%

\end{array}%

\right.

\end{equation*}%

where $p>1$, $s\in (0,1)$, $\Omega \subset \mathbb{R}^{n}(n>ps),$ be a bounded smooth domain, $\lambda $, $\mu $ are positive parameters and the functions $f,g:\overline{%

\Omega }\times \lbrack 0,\infty )\longrightarrow [0,\infty),$ are continuous and differentiable with respect to the second variable. Our main tools are based on variational methods combined with a classical concentration

compacteness method.

Descargas

La descarga de datos todavía no está disponible.

Citas

J. G. Azorero, I. P. Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Am. Math. Soc., 323(2)(1991), 877-895. https://doi.org/10.1090/S0002-9947-1991-1083144-2

T. Bartsch, Z. Liu, On a superlinear elliptic p-laplacian equation, J. Differ. Equ. 198(2004), 149-175. https://doi.org/10.1016/j.jde.2003.08.001

L. Brasco, E. Parini, The second eigenvalue of the fractional p-Laplacian, Adv. Calc. Var. 9(2016), 323-355. https://doi.org/10.1515/acv-2015-0007

H. Brezis, P. G. Ciarlet,J. L. Lions, Analyse fonctionnelle: theorie et applications, Paris: Dunod, 1999. Print.

A. D. Castro, T. Kuusi, G. Palatucci, Local behavior of fractional p-minimizers, Ann. Inst. Henri Poincare, Anal. Non Lineaire 33(5) (2016) 1279-1299. https://doi.org/10.1016/j.anihpc.2015.04.003

S. Cingolani, G. Vannella, Multiple positive solutions for a critical quasilinear equation via morse theory, Ann. I. H. Poincarrr'e 26(2009)397-413. https://doi.org/10.1016/j.anihpc.2007.09.003

G. Dinca, P. Jebelean, J. Mawhin, Variational and topological methods for dirichlet problems with p-laplacian Port. Math. (N. S.), 58 (2001), 339-378.

I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47(2) (1974), 324-353. https://doi.org/10.1016/0022-247X(74)90025-0

J. F. Escobar, Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate, Commun. Pure Appl. Math. 43(7)(1990), 857-883. https://doi.org/10.1002/cpa.3160430703

G. Franzina, G. Palatucci, Fractional p-eigenvalues, Riv. Mat. Univ. Parma (N. S.) 5 (2014) 373-386.

A. Ghanmi, K. Saoudi, The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator, Frac. Differ. Calculus, 6 (2016), 201-217. https://doi.org/10.7153/fdc-06-13

A. Ghanmi, Multiplicity of nontrivial solutions of a class of fractional p-Laplacian problem, Z. Anal. Anwend., 34 (2015), 309-319. https://doi.org/10.4171/ZAA/1541

M. Guedda,L. V'eron, Quasilinear elliptic equations involving critical sobolev exponents, Nonlinear Anal. Theory Methods Appl. 13(8) (1989), 879-902. https://doi.org/10.1016/0362-546X(89)90020-5

A. Iannizzotto, S. B. Liu, K. Perera, M. Squassina, Existence results for fractional p-Laplacian problem via morse theory, Adv. Calc. Var. 9(2) (2016), 101-125. https://doi.org/10.1515/acv-2014-0024

S. Jarohs, Strong comparison principle for the fractional p-Laplacian and applications to starshaped rings, Adv. Nonlinear Stud. 18(4) (2018) 691-704. https://doi.org/10.1515/ans-2017-6039

M. Kratou, Three solutions for a semilinear elliptic boundary value problem,Proc Math Sci 129, 22 (2019). https://doi.org/10.1007/s12044-019-0465-0

P. L. Lions, The concentration-compactness principle in the calculus of variations. the limit case, part 1. Rev. Mat. Iberoam. 1 (1985), 145-201. https://doi.org/10.4171/RMI/6

E. Lindgren, H¨older estimates for viscosity solutions of equations of fractional p-Laplace type, Nonlinear Differ. Equ. Appl. 23(5) (2016), 23-55. https://doi.org/10.1007/s00030-016-0406-x

X. Mingqi, B. Zhang, V.D. R'adulescu, Superlinear Schr¨odinger-Kirchhoff type problems involving the fractional pLaplacian and critical exponent, Adv. Nonlinear Anal. 9(1) (2020) 690-709. https://doi.org/10.1515/anona-2020-0021

G. Molica Bisci, V.D. R'adulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems, vol.162, Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781316282397

E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004

J. T. Schwartz, Generalizing the lusternik-schnirelman theory of critical points, Commun. Pure Appl. Math. 17(3)(1964), 307-315. https://doi.org/10.1002/cpa.3160170304

R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389(2) (2012), 887-898. https://doi.org/10.1016/j.jmaa.2011.12.032

M. Struwe, Three non-trival solutions of anticoercive boundary value problems for the pseudo-laplace-operator, Journal fr die reine und angewandte Mathematik, 325(1991), 68-74.

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. equ. 51(1 )(1984), 126-150. https://doi.org/10.1016/0022-0396(84)90105-0

M. Willem, Minimax theorems, PNLDE 24, Birkh¨auser, Boston-Basel-Berlin 1996. https://doi.org/10.1007/978-1-4612-4146-1

Z. Zhang, J. Chen, S. Li, Construction of pseudo-gradient vector field and sign- changing multiple solutions involving p-laplacian, J. Diffe. Equ. 201(2) (2004), 287-303. https://doi.org/10.1016/j.jde.2004.03.019

Publicado
2022-12-27
Sección
Articles