Existence and multiplicity of solutions for a Steklov eigenvalue problem involving the p(x)-Laplacian-like operator

  • Abdelmajid Boukhsas Faculté des sciences et techniques https://orcid.org/0000-0002-9317-8232
  • B. Karim University Mohammed I
  • A. Zerouali Regional Centre of Trades Education and Training
  • O. Chakrone University Mohammed I

Resumen

Using the variational method, we prove the
existence and multiplicity of solutions for a Steklov problem involving the $p(x)$-Laplacian-like operator, originated from a capillary phenomena. Especially, an existence criterion for infinite many pairs of solutions for the problem is obtained.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Abdelmajid Boukhsas, Faculté des sciences et techniques

Department of Mathematics

B. Karim, University Mohammed I

Department of Mathematics

O. Chakrone, University Mohammed I

Department of Mathematics

Citas

A. Boukhsas, B. Ouhamou, Steklov eigenvalues problems for generalized (p, q)-Laplacian type operators. To appear.

D.G. Costa, An Invitation to Variational Methods in Differential Equations. Birkhauser, Basel (2007)

P. Clement, R. Manasevich and E. Mitidieri, On a modified capillary equation, Journal of Differential Equations 124 (1996), 343-358.

D.E. Edmunds, J. Rakosnık, Sobolev embedding with variable exponent. Stud. Math. 143, 267-293 (2000).

D.E. Edmunds, J. Lang, A. Nekvinda, On Lp(x)(Ω) norms. Proc. R. Soc. Ser. A. 455, 219-225 (1999)

X.L. Fan, Regularity of minimizers of variational integrals with p(x)-growth conditions, Ann. Math. Sinica, 17 A(5) (1996), 557-564.

X.L. Fan, D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω) , J. Math. Anal. Appl. 263 (2001), 424-446.

X.L. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces W1,p(x). J. Math. Anal. Appl. 262(2), 749.760 (2001)

X.L. Fan and D. Zhao, On the generalized Orlicz-Sobolev space Wk,p(x)(Ω). J.Gancu Educ. College 12 (1998), no. 1, 1-6.

Y. Jabri, The mountain Pass Theorem. Variants, Generalizations and Some Application, Cambridge University Press, (2003).

B. Karim, A. Zerouali and O. Chakrone, Existence and Multiplicity Results for Steklov Problems with p (.)-Growth Conditions. Bulletin of the Iranian Mathematical Society, 44(3), 819-836.(2018)

O. Kovacik,, J. Rakosnk, On spaces Lp(x)(Ω) and Wk,p(x)(Ω). Czechoslov. Math. J. 41(4), 592-618 (1991)

J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)

M. Mihailescu, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Anal., 67 (2007), 1419-1425.

W.M. Ni, J. Serrin, Existence and non-existence theorem s for ground states for quasilinear partial differential equations, Att. Conveg. Lincei 77 (1985), 231-257.

W.M. Ni, J. Serrin, Nonexistence theorems for quasilinear partial differential equations. Rend. Circ. Mat. Palermo (2) Suppl, 8, 171-185.(1985)

F. Obersnel, P. Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation. J. Differ. Equ. 249, 1674-1725 (2010).

M.E. Ouaarabi, C. Allalou, and S . Melliani, p (x)-Laplacian-Like Neumann Problems in Variable-Exponent Sobolev Spaces Via Topological Degree Methods. arXiv preprint arXiv:2112.06262.(2021) .

M.M. Rodrigues, Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like operators. Mediterr. J. Math. 9, 211-223 (2012).

M. Willem, Minimax Theorems, Birkhauser, Basel, 1996.

Publicado
2024-05-08
Sección
Articles