On compositional dynamics on hardy space

Resumen

In this work, we examine super-recurrence and super-rigidity of composition operators acting on $H(\mathbb{D})$ the space of holomorphic functions on the unit disk $\mathbb{D}$ and on $H^2(\mathbb{D})$ the Hardy-Hilbert space. We characterize the symbols that generate super-recurrent and super-rigid composition operators acting on $H(\mathbb{D})$ and $H^2(\mathbb{D})$.

Descargas

La descarga de datos todavía no está disponible.

Citas

E. Akin, Recurrence in topological dynamics: Furstenberg families and Ellis actions, Springer Science and Business Media (2013).

M. Amouch, O. Benchiheb, Some versions of supercyclicity for a set of operators, Filomat, 35, 1619-1627, 2021. DOI: https://doi.org/10.2298/FIL2105619A

M. Amouch, O. Benchiheb, On super-recurrent operators, accepted for publication in Filomat Journal.

M. Amouch, O. Benchiheb, Diskcyclicity of sets of operators and applications, Acta Mathematica Sinica, English Series. 36, 1203-1220, 2020. DOI: https://doi.org/10.1007/s10114-020-9307-3

M. Amouch, O. Benchiheb, On cyclic sets of operators, Rendiconti del Circolo Matematico di Palermo Series 2, 68, 521-529, 2019. DOI: https://doi.org/10.1007/s12215-018-0368-4

M. Amouch, O. Benchiheb, On linear dynamics of sets of operators, Turk. J. Math, 43, 402-411, 2019. DOI: https://doi.org/10.3906/mat-1808-129

M. Amouch, N. Karim, Strong transitivity of composition operators, Acta. Math. Hungar, 164, 458-469, 2021. DOI: https://doi.org/10.1007/s10474-021-01140-y

F. Bayart, E Matheron, Dynamics of linear operators, New York, NY, USA, Cambridge University Press (2009). DOI: https://doi.org/10.1017/CBO9780511581113

O. Benchiheb, F. Sadek, M. Amouch, On super-rigid and uniformly super-rigid operators. 3866993[math.FA]03 Aug 2021.

M. J. Beltran-Meneu, E. Jorda, M. Murillo-Arcila, Supercyclicity of weighted composition operators on spaces of continuous functions, Collectanea Mathematica, 71, 493-509, 2020. DOI: https://doi.org/10.1007/s13348-019-00274-1

L. Bernal-Gonzalez, A. Montes-Rodriguez, Universal functions for composition operators, Complex Variables and Elliptic Equations, 27, 47-56, 1995. DOI: https://doi.org/10.1080/17476939508814804

L. Bernal-Gonzalez, A. Bonilla, M. C. Calderon-Moreno. Compositional hypercyclicity equals supercyclicity. Houston J. Math, 33, 581-591, 2007.

J. P. Bes, A. Peris, Hereditarily hypercyclic operators, Journal of Functional Analysis, 167, 94-112 1999. DOI: https://doi.org/10.1006/jfan.1999.3437

G. D. Birkhoff, Surface transformations and their dynamical applications, Acta. Math, 43, 1-119, 1922. DOI: https://doi.org/10.1007/BF02401754

A. Bonilla, K-G. Grosse-Erdmann, A. L´opez-Mart´ınez A. Peris, Frequently recurrent operators, arXiv:2006.11428v1 [math.FA] 19 Jun 2020.

P. Bourdon, J. H. Shapiro, Cyclic phenomena for composition operators, Vol. 596. American Mathematical Soc (1997). DOI: https://doi.org/10.1090/memo/0596

R. Cardeccia, S. Muro, Arithmetic progressions and chaos in linear dynamics, Integral Equations and Operator Theory, 94, 1-18, 2022. DOI: https://doi.org/10.1007/s00020-022-02687-3

G. Costakis, A. Manoussos, I. Parissis, Recurrent linear operators, Complex. Anal. Oper. Th, 8, 1601-1643, 2014. DOI: https://doi.org/10.1007/s11785-013-0348-9

G. Costakis, I. Parissis, Szemer´edi’s theorem, frequent hypercyclicity and multiple recurrence. Math. Scand, 110, 251-272, 2012. DOI: https://doi.org/10.7146/math.scand.a-15207

T. Eisner, Rigidity of contractions on Hilbert spaces, arXiv preprint arXiv:0909.4695 (2009).

T. Eisner, S. Grivaux, Hilbertian Jamison sequences and rigid dynamical systems, J. Funct. Anal. 261, 2013-2052, 2011. DOI: https://doi.org/10.1016/j.jfa.2011.06.001

H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton: Princeton University Press, M. B. Porter Lectures (1981). DOI: https://doi.org/10.1515/9781400855162

H. Furstenberg, B. Weiss, The finite multipliers of infinite ergodic transformations, The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D.). Lecture Notes in Math., 668. Springer, Berlin. vol. 1978, p. 127-132 (1977). DOI: https://doi.org/10.1007/BFb0101785

V. J. Galan, F. Martlınez-Gimenez, P. Oprocha, A. Peris, Product recurrence for weighted backward shifts, Appl. Math. Inf. Sci, 9, 2361-2365, 2015.

S. Glasner, D. Maon, Rigidity in topological dynamics, Ergodic Theory Dynam. Syst, 9, 309-320, 1989. DOI: https://doi.org/10.1017/S0143385700004983

L. B Gonzalez, A. M. Rodrıguez, Non-finite-dimensional closed vector spaces of universal functions for composition operators, J. Approx. Theory, 82, 375-391, 1995. DOI: https://doi.org/10.1006/jath.1995.1086

W. H. Gottschalk, G. H. Hedlund, Topological dynamics, American Mathematical Society. Vol. 36. American Mathematical Soc (1955). DOI: https://doi.org/10.1090/coll/036

S. Grivaux, E. Matheron, Q. Menet, Linear dynamical systems on Hilbert s ´ paces: typical properties and explicit examples (Vol. 269, No. 1315). American Mathematical Society (2021). DOI: https://doi.org/10.1090/memo/1315

K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bulletin of the American Mathematical Society, 36, 345-381, 1999. DOI: https://doi.org/10.1090/S0273-0979-99-00788-0

K.-G. Grosse-Erdmann, R. Mortini, Universal functions for composition operators with nonautomorphic symbol, J. Anal. Math, 107, 355-376, 2009. DOI: https://doi.org/10.1007/s11854-009-0013-4

K.-G. Grosse-Erdmann, A. Peris, Linear Chaos. (Universitext). Springer, London (2011). DOI: https://doi.org/10.1007/978-1-4471-2170-1

S. He, Y. Huang, Z. Yin, JF -class weighted backward shifts, Internat. J. Bifur. Chaos Appl. Sci. Engrg, 28, 1850076, 2018. DOI: https://doi.org/10.1142/S0218127418500761

H. M. Hilden, L. J. Wallen, Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J, 23, 557-565, 1994. DOI: https://doi.org/10.1512/iumj.1974.23.23046

N. Karim, O. Benchiheb, M. Amouch. On Compositional dynamics on spaces of analytic functions, Accepted for publication in Houston journal of mathematics.

J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc, 23, 481-519, 1925. DOI: https://doi.org/10.1112/plms/s2-23.1.481

H. Poincare. Sur le probleme des trois corps et les ´equations de la dynamique. Acta mathematica. 13, 3-270, 1890.

J. H. Shapiro. Composition operators and classical function theory, Universitext: Tracts in Mathematics, SpringerVerlag, New York, (1993). DOI: https://doi.org/10.1007/978-1-4612-0887-7

Z. Yin, Y. Wei, Recurrence and topological entropy of translation operators, J. Math. Anal. Appl. 460, 203-215, 2018. DOI: https://doi.org/10.1016/j.jmaa.2017.11.046

Publicado
2022-12-29
Sección
Articles