A new generalized beta function associated with statistical distribution and fractional kinetic equation
Resumen
Several authors have extensively investigated beta function, hypergeometric function and confluent hypergeometric function, their extensions and generalizations due to their several application in many areas of engineering, probability theory and science. The main purpose of this paper is to present a new generalization of extended beta function, hypergeometric function and confluent hypergeometric function with the help of m-parameter Mittag-Leffler function, as well as examine some important properties like integral representations, differential formula and summation formulas. We also examine generalized Caputo fractional derivative operator with the help of m-parameter Mittag-Leffler function with associated properties using the generalized beta function. We define a new beta distribution involving the new generalized beta function. The mean, variance, coefficient of variance, moment generating function and characteristic function and cumulative distribution are derived. Further, we derive the solution of fractional Kinetic equation involving generalized hypergeometric function.
Descargas
Citas
Agarwal, R, Chandola, A, Pandey, R. M, Nisar, K.S, m-Parameter Mittag–Leffler function, its various properties, and relation with fractional calculus operators, Math. Methods Appl. Sci., 44(7), 5365-5384 (2021) https://doi.org/10.1002/mma.7115.
Ali, M, Ghayasuddin, M, Khan, W. A, and Nisar, K.S, A novel kind of the multi-index beta, Gauss and confluent hypergeometric functions, J. Math. Comput. Sci., 23, 145-154 (2021) https://doi.org/10.22436/jmcs.023.02.07
Bateman, H, and Erdelyi, A, Tables of Integral Transforms, Vol.1, McGraw-Hill Book Co., 1954.
Chand, M, Hachimi, H, Rani R, New extension of beta function and its applications, Int. J. Math. Math. Sci., (2018), https://doi.org/10.1155/2018/6451592.
Chandola A, Pandey R.M, Agarwal R., Purohit, S.D, An extension of beta function, its statistical distribution, and associated fractional operator, Adv. Difference Equ. 1, 1-17 (2020) https://doi.org/10.1186/s13662-020-03142-6.
Chandola, A, Pandey, R. M. , Agarwal R, A study of integral transform of convolution type integrals involving khypergeometric functions. Mathematics in Engineering, Science and Aerospace (MESA), 12(3) (2021).
Chandola, A, Pandey, R.M, Agarwal, R, Bessel-Maitland function of several variables and its properties related to integral transforms and fractional calculus, Appl. Appl. Math(AAM), 16(1), 23 (2021).
Chaudhry, M. A, Qadir, A, Rafique, M and Zubair, S.M, Extension of Eulers beta function, J. Comput. Appl. Math, 78(1), 19-32 (1997) https://doi.org/10.1016/S0377-0427(96)00102-1.
Evans, M, Hastings, N, Peacock, B and Forbes, C, Statistical distributions, John Wiley and Sons, 2011.
Goyal, R, Agarwal, P, parametentier, A, Cesarano, C, An extension of Caputo fractional derivative operator by use of Wiman’s function, Symmetry. 13(12), 2238 (2021) https://doi.org/10.3390/sym13122238.
Haubold, H. J, Mathai, A. M, The fractional kinetic equation and thermonuclear functions, Astrophys. Space Sci., 273(1), 53-63 (2000).
Kalla, S.L, Al-Saqabi, B.N, A unified form of gamma-type distributions, Appl. Math. Comput., 118, 175-187 (2001).
Kilbas, A. A, Srivastava, H. M, Trujillo, J.J, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V. Amsterdam, The Netherlands, 2006.
Mishra, V. N, Khatri, K, and Mishra, L. N, Statistical approximation by Kantorovich-type discrete q-Beta operators, Adv. Difference Equ., 1, 1-15 (2013).
Mishra, V.N, Khatri, K and Narayan Mishra, L, Some approximation properties of-Baskakov-Beta-Stancu type operators , Journal of Calculus of Variations, 2013.
Mishra, V. N, and Sharma, P, On approximation properties of generalized Lupaş–Durrmeyer operators with two parameters and based on Polya distribution, Bol. Soc. Parana. Mat., 26(1), 171-185 (2020).
Mittag-Leffler, G, Sur la nouvelle fonction E(x), CR Acad. Sci. Paris, 137, 554-558 (1903).
Oraby, K.M, Rizq, A, Abdelhak, E, Taema, E, Magdy, M, Khaled, M, Generalization of beta functions in terms of Mittag-Leffler function. Frontiers in Scientific Research and Technology. 1(1), 81-88 (2020) https://doi.org/10.21608/fsrt.2020.39397.1023.
Rahman, G, Mubeen, S, Nisar, K. S, A new generalization of extended beta and hypergeometric functions, J. Fract. Calc. Appl., 11(2), 32-44 (2020) https://doi.org/10.20944/preprints201802.0036.v1.
Rainville, E.D, Special Functions, Bronx, New York, Chelsea Publications, 1971.
Saxena, R. K, Kalla, S.L, On the solutions of certain fractional kinetic equations. Appl. Math. Comput.,199(2), 504-511 (2008) https://doi.org/10.1016/j.amc.2007.10.005.
Shadab, M, Jabee, S, and Choi, J, An extension of beta function and its application, Far East J. Math. Sci., 103, 235-251 (2018) https://doi.org/10.17654/MS103010235.
Sharma, P, and Mishra, V. N, On q-analogue of modified Kantorovich-type discrete-beta operators Complex Anal. Oper. Theory, 12(1), 37-53 (2018).
Spiegel, M. R, Laplace transforms, McGraw-Hill, New York, USA, 1965.
Srivastava, H. M, Saxena, R. K, Operators of fractional integration and their applications, Appl. Math. Comput., 118(1), 1-52 (2001) https://doi.org/10.1016/S0096-3003(99)00208-8.
Wiman, A, Über den fundamentalsatz in der teorie der funktionen Ea(x), Acta Math., 29, 191-201 (1905).
Derechos de autor 2024 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).