Weak solution to p(x)-Kirchoff type problems under no-flux boundary condition by topological degree
Résumé
This paper is concerned with the existence of weak solutions of $p(x)$-Kirchhoff type problems with no-flux boundary condition. Our technical approach is based on topological degre methods of Berkovits.
Téléchargements
Références
C. Allalou, M. El Ouaarabi, S. Melliani ” Existence and uniqueness results for a class of p(x)-Kirchhoff-type problems with convection term and Neumann boundary data. J Elliptic Parabol Equ (2022). DOI: https://doi.org/10.1007/s41808-022-00165-w
Y. Akdim, E. Azroul and A. Benkirane, Existence of solutions for quasilinear degenerate elliptic equations. Electronic Journal of Differential Equations (EJDE), 2001, vol. 2001, p. Paper No. 71, 19.
J .Berkovits, on the degree theory for nonlineair mapping of monotone type, Vol 58. Helsinki: Guomalaimen Tiedeakatemia, 1986. DOI: https://doi.org/10.1016/0024-3795(86)90317-4
M. M. Boureanu and D. Udrea, Existence and multiplicity results for elliptic problems with p(x)-growth conditions, Nonlinear Anal. Real World Appl., 14(2013), 1829-1844. DOI: https://doi.org/10.1016/j.nonrwa.2012.12.001
J. Berkovits, Extension of the Leray-Schauder degree for abstract Hammerstein type mappings. Journal of Differential Equations, 2007, vol. 234, no 1, p. 289-310. DOI: https://doi.org/10.1016/j.jde.2006.11.012
F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N.S.), 9 (1983), 1-39. DOI: https://doi.org/10.1090/S0273-0979-1983-15153-4
E. Cabanillas, A. G. Aliaga, W. Barahona and G. Rodriguez, Existence of solutions for a class of p (x)-Kirchhoff type equation viatopological methods. J. Adv. Appl. Math. and Mech 2.4 (2015): 64-72.
E. Cabanillas, J. B. B. Barros, R. J. de la Cruz Marcacuzco and Z. H. Segura, Existence of Solutions for a Class of p(x)−Kirchhoff Type Equation with Dependence on the Gradient.” Kyungpook Mathematical Journal 58.3 (2018): 533-546.
S. Heidarkhani, G. A. Afrouzi, J. Henderson, S. Moradi and G. Caristi, Variational approaches to p-Laplacian discrete problems of Kirchhoff-type. Journal of Difference Equations and Applications 23.5 (2017): 917-938. DOI: https://doi.org/10.1080/10236198.2017.1306061
M. Chipot and J. F. Rodrigues, On a class of nonlocal nonlinear elliptic problems, RAIRO, ModA©lisation ˜ Mathematique et Analyse Numerique, 26(1992) 447-467. DOI: https://doi.org/10.1051/m2an/1992260304471
M. Mihailescu, On a class of nonlinear problems involving a p(x)-Laplace type operator, Czechoslovak Math. J. 58 (2008) 155-172. DOI: https://doi.org/10.1007/s10587-008-0011-1
H. Fan, Multiple positive solutions for a class of Kirchho¨ı¬€ type problems involving critical Sobolev exponents, J. Math.Anal. Appl. 431 (2015) 150-168. DOI: https://doi.org/10.1016/j.jmaa.2015.05.053
X.L. Fan ,D. Zhao On the Spaces Lp(x) (Ω) and W m,p(x) (Ω). J Math Anal Appl. 2001;263:424-446. DOI: https://doi.org/10.1006/jmaa.2000.7617
F. Faraci and C. Farkas. On a critical Kirchhoff-type problem. Nonlinear Analysis 192 (2020): 111679. DOI: https://doi.org/10.1016/j.na.2019.111679
S. Kichenassamy, L. Veron, Singular solutions of the p-Laplace equation,Math. Ann. 275 (1985) 599-615. DOI: https://doi.org/10.1007/BF01459140
G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883
O. Kovacik , J.Rakosnık . On spaces Lp(x) and W1,p(x) . Czechoslovak Math. J. 1991;41(4):592-618. DOI: https://doi.org/10.21136/CMJ.1991.102493
J. Leray, J. Schauder, Topologie et equations fonctionnelles, Ann. Sci. Ec. Norm., 51 (1934), 45-78. DOI: https://doi.org/10.24033/asens.836
S. A Temghart, A.Kassidi, C.Allalou, A. Abbassi. On an elliptic equation of Kirchhoff type problem via topological degree. Nonlinear Studies, 28 (4), (2021), 1179-1193.
S. Yacini, C. Allalou, K. Hilal, and A. Kassidi: Weak solutions to kirchhoff type problems via topological degree. Advanced Mathematical Models and Applications Vol.6, No.3, 2021, pp.309-321.
Z. Yucedag and R. Ayazoglu. Existence of solutions for a class of Kirchhoff-type equation with nonstandard growth. Univ. J. App. Math 2.5 (2014): 215-221. DOI: https://doi.org/10.13189/ujam.2014.020504
E. Zeider, Nonlinear Functional Analysis and its Applications, IIB : Nonlinear Monotone Operators, Springer, New York, 1990.
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).