On ∗-η-Ricci-Yamabe solitons on LP-Sasakian manifolds
Resumen
In the present paper, geometry of LP-Sasakian manifolds admitting $*-\eta-$Ricci-Yamabe solitons is studied and some characterizations on LP-Sasakian manifolds admitting with $*-\eta-$Ricci-Yamabe solitons are obtained. Finally, the existence of $*-\eta-$Ricci-Yamabe solitons on an LP-Sasakian manifold is proved by constructing a non-trivial example.
Descargas
La descarga de datos todavía no está disponible.
Citas
\bibitem{ADG} Aqeel, A. A., De, U. C. and Ghosh, G. C., On Lorentzian para-Sasakian manifolds, Kuwait J. Sci. Eng., 31(2)(2004), 1-13.
\bibitem{BLR} Blair, D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, 1976.
\bibitem{CD} Chen, B.Y. and Deshmukh S., Yamabe and quasi-Yamabe solitons on Euclidean submanifolds, Mediterr. J. Math., 15, 194 (2018).
\bibitem{CHEN} Chen, X., Almost quasi-Yamabe solitons on almost cosymplectic manifolds, Int. J. Geom. Methods Mod. Phys. 17(5) (2020) 2050070.
\bibitem{DC} Deshmukh, S. and Chen, B. Y., A note on Yamabe solitons, Balkan Journal of Geometry and Its Applications, 23 (1), (2018), 37-43.
\bibitem{DEC} Dey, C., De, U. C., A note on quasi-Yamabe solitons on contact metric manifolds, J. Geom., 111, 11 (2020).
\bibitem{DED} Dey, D., Almost Kenmotsu metric as Ricci-Yamabe soliton, arXiv:2005.02322 [math.DG].
\bibitem{DR} Dey, S. and Roy, S., $*-\eta-$Ricci Soliton within the framework of Sasakian manifold, Journal of Dynamical Systems and Geomatric Theories, 18 (2020), 163-181.
\bibitem{DGL} Duggal, K. L., Affine conformal vector fields in semi-Riemannian manifolds, Acta Applicandae Mathematicae, 23 (1991), 275-294.
\bibitem{GHOS} Ghosh, A., Ricci soliton and Ricci almost soliton within the framework of Kenmotsu manifold, Carpathian Math. Publ., 11(1) (2019), 59-69.
\bibitem{GC} Guler, S. and Crasmareanu, M., Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy, Turk. J. Math., 43 (2019), 2631-2641.
\bibitem{HMD} Hamada, T., Real hypersurfaces of complex space forms in terms of Ricci $*$-tensor, Tokyo J. Math., 25 (2) (2002), 473-483.
\bibitem{HML1} Hamilton, R. S., Lectures on Geometric Flows (Unpublished manuscript, 1989).
\bibitem{HML2} Hamilton, R. S., The Ricci Flow on Surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math., A.M.S., 71 (1988), 237-262.
\bibitem{HC} Haseeb, A. and Chaubey, S. K., Lorentzian para-Sasakian manifolds and $*-$Ricci solitons, Kragujevac Journal of Mathematics, 48(2) (2024), 167-179.
\bibitem{HP1} Haseeb, A. and Prasad, R., $\eta-$Ricci solitons on $\epsilon-$LP-Sasakian manifolds with a quarter-symmetric metric connection, Honam Mathematical J., 41(3) (2019), 539-558.
\bibitem{KMK} Kaimakamis, G. and Panagiotidou, K., $*-$ Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys., 86 (2014), 408-413.
\bibitem{MAT} Matsumoto, K., On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci., 12 (1989), 151-156.
\bibitem{NL} Neill, B. O., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
\bibitem{OJH} Ojha, R. H., A note on the $M-$ projective curvature tensor, Indian J. Pure Appl. Math., 8
12 (1975), 1531-1534.
\bibitem{PB}
Prakasha, D. G. and Hadimani, B. S., $\eta-$Ricci solitons on para-Sasakian manifolds, J. Geom., 108 (2017), 383-392.
\bibitem{PV} Prakasha, D. G. and Veeresha, P., Para-Sasakian manifolds and $*-$ Ricci solitons, Afrika Matematika, 30(2018), 989-998.
\bibitem{HP2} Prasad, R. and Haseeb, A., On Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection, Novi Sad J. Math., 62(2) (2016), 103-116.
%\bibitem{SB} Shaikh, A. A. and Baishya, K. K., Some results on $LP-$Sasakian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, %49(97)(2)(2006), 193-205.
\bibitem{Suh} Suh, Y. J. and De, U. C., Yamabe Solitons and Ricci Solitons on almost co-Kahler manifolds, Canad. Math. Bull. Vol. 62 (2019), 653-661.
\bibitem{TACH} Tachibana, S., On almost-analytic vectors in almost-Kahlerian manifolds, Tohoku Math. J. (2), 11 (1959), no 2, 247-265.
\bibitem{VENK} Venkatesha, Naik, D. M. and Kumara, H. A., $*-$ Ricci solitons and gradient almost $*-$Ricci
solitons on Kenmotsu manifolds, Mathematica Slovaca, 69(2019), 1447-1458.
\bibitem{YANO} Yano, K., Integral Formulas in Riemannian Geometry, Marcel Dekker, New York (1970).
\bibitem{YDA} Yildiz A., De, U. C. and Ata, E., On a type of Lorentzian para-Sasakian manifolds, Math. Reports, 16(66)(1), 61-67.
\bibitem{YLDS} Yoldas, H. I., Meric, S. E. and Yasar, E., Some characterizations of $\alpha-$cosymplectic manifolds admitting Yamabe solitons, Palestine Journal of Mathematics, 10(1)(2021), 234-241.
\bibitem{LI} Zhang, P., Li, Y., Roy, S. and Dey, S., Geometry of $\alpha-$cosymplectic metric as $*-$Conformal $\eta-$Ricci-Yamabe solitons admitting quarter-symmetric metric connection, Symmetry, 13(11) (2021) : 2189.\\
\bibitem{BLR} Blair, D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, 1976.
\bibitem{CD} Chen, B.Y. and Deshmukh S., Yamabe and quasi-Yamabe solitons on Euclidean submanifolds, Mediterr. J. Math., 15, 194 (2018).
\bibitem{CHEN} Chen, X., Almost quasi-Yamabe solitons on almost cosymplectic manifolds, Int. J. Geom. Methods Mod. Phys. 17(5) (2020) 2050070.
\bibitem{DC} Deshmukh, S. and Chen, B. Y., A note on Yamabe solitons, Balkan Journal of Geometry and Its Applications, 23 (1), (2018), 37-43.
\bibitem{DEC} Dey, C., De, U. C., A note on quasi-Yamabe solitons on contact metric manifolds, J. Geom., 111, 11 (2020).
\bibitem{DED} Dey, D., Almost Kenmotsu metric as Ricci-Yamabe soliton, arXiv:2005.02322 [math.DG].
\bibitem{DR} Dey, S. and Roy, S., $*-\eta-$Ricci Soliton within the framework of Sasakian manifold, Journal of Dynamical Systems and Geomatric Theories, 18 (2020), 163-181.
\bibitem{DGL} Duggal, K. L., Affine conformal vector fields in semi-Riemannian manifolds, Acta Applicandae Mathematicae, 23 (1991), 275-294.
\bibitem{GHOS} Ghosh, A., Ricci soliton and Ricci almost soliton within the framework of Kenmotsu manifold, Carpathian Math. Publ., 11(1) (2019), 59-69.
\bibitem{GC} Guler, S. and Crasmareanu, M., Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy, Turk. J. Math., 43 (2019), 2631-2641.
\bibitem{HMD} Hamada, T., Real hypersurfaces of complex space forms in terms of Ricci $*$-tensor, Tokyo J. Math., 25 (2) (2002), 473-483.
\bibitem{HML1} Hamilton, R. S., Lectures on Geometric Flows (Unpublished manuscript, 1989).
\bibitem{HML2} Hamilton, R. S., The Ricci Flow on Surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math., A.M.S., 71 (1988), 237-262.
\bibitem{HC} Haseeb, A. and Chaubey, S. K., Lorentzian para-Sasakian manifolds and $*-$Ricci solitons, Kragujevac Journal of Mathematics, 48(2) (2024), 167-179.
\bibitem{HP1} Haseeb, A. and Prasad, R., $\eta-$Ricci solitons on $\epsilon-$LP-Sasakian manifolds with a quarter-symmetric metric connection, Honam Mathematical J., 41(3) (2019), 539-558.
\bibitem{KMK} Kaimakamis, G. and Panagiotidou, K., $*-$ Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys., 86 (2014), 408-413.
\bibitem{MAT} Matsumoto, K., On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci., 12 (1989), 151-156.
\bibitem{NL} Neill, B. O., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
\bibitem{OJH} Ojha, R. H., A note on the $M-$ projective curvature tensor, Indian J. Pure Appl. Math., 8
12 (1975), 1531-1534.
\bibitem{PB}
Prakasha, D. G. and Hadimani, B. S., $\eta-$Ricci solitons on para-Sasakian manifolds, J. Geom., 108 (2017), 383-392.
\bibitem{PV} Prakasha, D. G. and Veeresha, P., Para-Sasakian manifolds and $*-$ Ricci solitons, Afrika Matematika, 30(2018), 989-998.
\bibitem{HP2} Prasad, R. and Haseeb, A., On Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection, Novi Sad J. Math., 62(2) (2016), 103-116.
%\bibitem{SB} Shaikh, A. A. and Baishya, K. K., Some results on $LP-$Sasakian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, %49(97)(2)(2006), 193-205.
\bibitem{Suh} Suh, Y. J. and De, U. C., Yamabe Solitons and Ricci Solitons on almost co-Kahler manifolds, Canad. Math. Bull. Vol. 62 (2019), 653-661.
\bibitem{TACH} Tachibana, S., On almost-analytic vectors in almost-Kahlerian manifolds, Tohoku Math. J. (2), 11 (1959), no 2, 247-265.
\bibitem{VENK} Venkatesha, Naik, D. M. and Kumara, H. A., $*-$ Ricci solitons and gradient almost $*-$Ricci
solitons on Kenmotsu manifolds, Mathematica Slovaca, 69(2019), 1447-1458.
\bibitem{YANO} Yano, K., Integral Formulas in Riemannian Geometry, Marcel Dekker, New York (1970).
\bibitem{YDA} Yildiz A., De, U. C. and Ata, E., On a type of Lorentzian para-Sasakian manifolds, Math. Reports, 16(66)(1), 61-67.
\bibitem{YLDS} Yoldas, H. I., Meric, S. E. and Yasar, E., Some characterizations of $\alpha-$cosymplectic manifolds admitting Yamabe solitons, Palestine Journal of Mathematics, 10(1)(2021), 234-241.
\bibitem{LI} Zhang, P., Li, Y., Roy, S. and Dey, S., Geometry of $\alpha-$cosymplectic metric as $*-$Conformal $\eta-$Ricci-Yamabe solitons admitting quarter-symmetric metric connection, Symmetry, 13(11) (2021) : 2189.\\
Publicado
2025-09-01
Número
Sección
Research Articles
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



