New algorithm on linearization-discretization solving systems of nonlinear integro-differential Fredholm equations
Resumen
This article deals with a new strategy for solving a certain type of nonlinear integro-differential Fredholm equations with a weakly singular kernel. We build our new algorithm starting with the linearization phase using Newton's iterative process, then with the discretization phase we apply the Kantorovich's projection method. The discretized linear scheme will be approximated by the product integration method in the weak singular terms, and the other regular integrals will be approximated by the Nyström method. The process of convergence of our new algorithm is carried out under certain predefined and necessary conditions. Finally, we give practical examples where, the results show the efficiency of our new algorithm for solving systems of weakly singular nonlinear integro-differential equations.
Descargas
Citas
R. A. Adams, Sobolev spaces. Academic Press. New York. (1975).
M. Ahues, A. Largillier and B. V. Limaye, Spectral Computations for Bounded Operators. Chapman and Hall/CRC. (2001).
K. E. Atkinson, The numerical solution of integral equations of the second kind. Cambridge University Press. Cambridge. (1997).
K. Atkinson, W. Han, Theoretical numerical analysis. A functional analysis framework. Springer. New York. (2001).
B. Belhireche, H. Guebbai, On the mixed nonlinear integro-differential equations with weakly singular kernel. Computational and Applied Mathematics. 41:36 (2022).
M. Ghiat, H. Guebbai, Analytical and numerical study for an integro-differential nonlinear volterra equation with weakly singular kernel. Comp. Appl. Math. 37 (2018) 4661-4674.
L. Grammant, M. Ahues, and F. D. D’Almeida, For nonlinear infinite dimensional equations which to begin with: Linearization or discretization, J. Integral Equ. Appl. 26 (2014) 413-436.
F. De Hoog, R. Weiss, Higher order methods for a class of Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 11 (1974) 1166-1180 .
L. Grammant, Nonlinear integral equations of the second kind: a new version of Nystr¨om method. Numer. Funct. Anal. Optim. 34:5 (2013) 496-515.
A. Khellaf, W. Merchela, S. Benarab, New numerical process solving nonlinear infinite dimensional equations. Int. J. Appl. Comput. Math. 39:93 (2020).
A. Khellaf, M. Z. Aissaoui, New theoretical conditions for solving functional nonlinear equations by linearization then discretization. Int. J. Nonlinear Anal. Appl. 13:1 (2022) 2857-2869.
E. G. Ladopoulous, Singular Integral Equations Linear and Non-Linear Theory and Its Applications in Science and Engineering. Springer. Berlin. (2000).
S. Lemita, H. Guebbai, I. Sedka, M. Z. Aissaoui, New method for the numerical solution of the Fredholm linear integral equation on a large interval. Russian Universities Reports Mathematics. 25:4 (2020) 387-400.
S. Touati, M. Z. Aissaoui , S. Lemita, H. Guebbai, Investigation approach for a nonlinear singular Fredholm integrodifferential equation. Bol Soc Paran Mat. 40 (2022).
A. Young, The application of approximate product-integration to the numerical solution of integral equations. Proc. Royal Soc. London. 224:1159 (1954) 561-573.
S. Salah, H. Guebbai, S. Lemita, M. Z. Aissaoui, Solution of an integro-differential nonlinear equation of Volterra arising of earthquake model. Bol Soc Paran Mat. 40 (2022).
Derechos de autor 2024 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).