The continuous quaternion wavelet transform on function spaces
Resumen
In this paper, boundedness results for the continuous quaternion wavelet transform on Besov, $BMO$ and Hardy $H^{p}$ spaces are established. Furthermore, the continuous quaternion wavelet transform is also studied on the weighted Besov, $BMO_k$ and $H^{p}_{k}$ spaces associated with a tempered weighted function.
Descargas
Citas
J. P. Antoine and R. Murenzi, Two-dimensional directional wavelet and scale-angle representation, Signal Processing, 52 (1996), no. 3, 259-281.
J. P. Antoine, P. Vandergheynst and R. Murenzi, Two-dimensional directional wavelets in image processing, Int. J. Imag. Syst. Technol. 7 (1996), no. 3, 152-165.
M. Bahri, E. Hitzer, A. Hayashi and R. Ashino, An uncertainty principle for quaternion Fourier transform, Computers and Mathematics with Applications, 56(9) (2008), 2398-2410.
M. Bahri, R. Ashino and R. Vaillancourt, Two-dimensional quaternion wavelet transform, Applied Mathematics and Computation, 218 (2011), no. 1, 10-21.
M. Bahri, R. Ashino and R. Vaillancourt, Convolution Theorems for Quaternion Wavelet Transform: Properties and Applications, Volume 2013, 1 - 10.
H. Banouh, A. Ben Mabrouk and M. Kesri, Clifford Wavelet Transform and the Uncertainty Principle. Adv. Appl. Clifford Algebras 29, 106 (2019).
G. Björck, Linear partial differential operators and generalized distributions, Ark. Mat. 6 (1966), 351-407.
C. K. Chui, An Introduction to Wavelets, Academic Press (1992).
N. M. Chuong and D. V. Duong, Boundedness of the Wavelet Integral operator on Weighted Function Spaces, Russian journal of mathematical physics, vol. 20 (2013), no.3, pp. 268-275.
L. Debnath and F. Shah, Wavelet Transforms and Their Applications, Birkhäuser Basel (2015).
T. A. Ell, N. L. Bihan and S. J. Sangwine, Quaternion Fourier transforms for signal and image processing, Wiley (2014).
S. Griffin, Quaternions: Theory and Applications, Nova Publishers, New York (2017).
E. Hitzer, Quaternion Fourier transform on quaternion fields and generalizations, Adv. appl. Clifford alg. 17 (2007), no. 3, 497-517.
E. Hitzer and S. J. Sangwine, Quaternion and Clifford Fourier Transforms and Wavelets, Birkhäuser Basel (2013).
L. Hörmander, The Analysis of Linear Partial Differential Operators II, Springer-Verlag, Berlin Heidelberg, New York (1983).
M. Izuki and Y. Sawano, Characterization of BMO via Ball Banach functions spaces, Vestn St- Peterbg Univ Mat Mekh Astron. 4 (2017), no. 62, 78-86.
F. John and L. Nirenberg, On functions of bounded mean oscillation, Communications on Pure and Applied Mathematics, 14 (1961), 415-426.
D. Lhamu and S. K. Singh, The quaternion Fourier and wavelet transforms on spaces of functions and distributions, Res. Math. Sci. 7 (2020) no. 11, https://doi.org/10.1007/s40687-020-00209-4.
S. Mallat, A wavelet tour of signal processing, Academic Press, San Diego (1999).
M. Mitrea, Clifford Wavelets, Singular Integrals and Hardy Spaces, Lect. Notes in Math., Vol. 1575, Springer, New York, 1994. https://doi.org/10.1007/bfb0073556
R. S. Pathak, A course in distribution theory and applications, Narosa Publishing House, New Delhi, India (2001).
L. Rodman, Topics in Quaternion Linear Algebra, Princeton University Press (2014).
H. Triebel, Theory of Function Spaces, Birkhäuser, Basel-Boston-Stuttgart (1983).
J. P. Ward, Quaternions and Cayley Numbers : Algebra and Applications, Springer Science and Business Media, Dordrecht: Kluwer Academic Publishers (1997).
Derechos de autor 2024 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).