A new characterization of groups $\mathbf{ B_4 (q )}$

  • behnam ebrahimzadeh Department of Mathematics, Persian Gulf University, Bushehr, Iran
  • Hamideh Hasanzadeh-Bashir Islamic Azad University

Resumo

One of an important problems in finite groups theory is, characterizable of groups by specific property. In this paper, we prove that groups $B_4 (q)$, where $3< q$ be prime number and $ \frac{q^4+1}{2}$ is a prime number, can be uniquely determined by the largest elements order and the order of group.

Downloads

Não há dados estatísticos.

Biografia do Autor

behnam ebrahimzadeh, Department of Mathematics, Persian Gulf University, Bushehr, Iran

Department of Mathematics

Hamideh Hasanzadeh-Bashir, Islamic Azad University

Department of Mathematics

Referências

G. Y. Chen, On the structure of Frobenius groups and 2-Frobenius groups, J. Southwest China Normal University. 20(5)(1995), 485-487.

G. Y. Chen, L. G. He and J. H. Xu, A new characterization of sporadic simple groups, Italian journal of pure and mathematics. 30(2013), 373-392.

G. Y. Chen, L. G. He, A new characterization of L2(q) where q = pn < 125, Italian journal of pure and mathematics. 38(2011),125-134 .

G. Y. Chen, L. G. He, A new characterization o simple K4 -group with type L2(p) Advanced in mathematics(china). (2012)doi: 10.11845/sxjz.165b .

Ebrahimzadeh, B., Iranmanesh, A., Tehranian, A and Parvizi Mosaed, H., A characterization of the suzuki groups by order and the largest elements order, Journal of sciences, islamic republic of iran . 27(4),(2016), 353-355.

Ebrahimzadeh, B., Mohammadyari, R., A new characterization of projective special unitary groupsPSU3(3n), Discussiones Mathematicae: General Algebra and Applications. 39 (1)(2019),35-41.

Ebrahimzadeh, B., A new characterization of simple groups 2Dn(3), Transactions Issue Mathematics, Azerbaijan National Academy of Sciences. 41 (4)(2019),57-62.

Ebrahimzadeh, B., Azizi, B., A characterization of projective special linear groups PSL(5, 2) and PSL(4, 5), Annals of the Alexandru Ioan Cuza University-Mathematics. 68 (1)(2022),133-140.

Ebrahimzadeh, B., Sadeghi, M. Y., Iranmanesh, A and Tehranian, A., A new characterization of symplectics groups PSP(8, q), Annals of the Alexandru Ioan Cuza University-Mathematics. 66 (1)(2020), 93-99.

Ebrahimzadeh, B., Mohammadyari, R and Sadeghi, M. Y., A new characterization of the simple groups C4(q), by its order and the largest order of elements, Acta et Commentationes Universitatis Tartuensis de Mathematica . 23 (2)(2019), 283-290.

D. Gorenstein, Finite groups, Harper and Row, New York,(1980).

L. G. He, G.Y. Chen, A new characterization of L3(q) (q 8) and U3(q) (q 11), J. Southwest Univ. (Natur.Sci.), 27 (33)(2011), 81-87.

G. Higman, Finite groups in which every element has prime power order, J. London. Math. Soc), 32 (1957), 335-342.

W. M. Kantor and A, Seress, Large element orders and the characteristic of Lie-type simple groups, J. Algebra. 322 (2009), 802-832 .

A. S. Kondrat’ev, Prime graph components of finite simple groups, Mathematics of the USSR-Sbornik, 67(1)(1990), 235-247.

A. Khosravi, and B. Khosravi, A new characterization of some alternating and symmetric groups (II) Houston J. Math, 30(4)(2004), 465-478.

J. Li, W. J. Shi, and D. Yu, A characterization of some PGL(2, q) by maximum element orders, Bull. Korean Math. Soc. 322(2009), 802-832.

J. S. Williams, Prime graph components of finite groups, J. Algebra. 69(2)(1981), 487-513.

A. V. Zavarnitsine, Recognition of the simple groups L3(q) by element orders, J. Group Theory. 7(1)(2004), 81-97.

Publicado
2024-05-20
Seção
Artigos