Besov-Hankel norms in terms of the continuous Bessel wavelet transform
Besov-Hankel norms in terms of the continuous Bessel wavelet transform
Résumé
Using the theory of Continuous Bessel wavelet transform in $L^p (\mathbb{R})$-spaces, we established the Parseval and inversion formulas for the $L^{p,\sigma}(\mathbb{R}^+)$- spaces. We investigate continuity and boundedness properties of Bessel wavelet transform in Besov-Hankel space. Our main results: are the characterization of Besov-Hankel space by using Bessel wavelet coefficient.
Téléchargements
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).
Funding data
-
Council of Scientific and Industrial Research, India
Grant numbers F.No. 16-6(DEC. 2017)/2018(NET/CSIR),



