Stochastic differential equations driven by relative martingales
Resumen
This paper contributes to the study of relative martingales. Specifically, for a closed random set $H$, they are processes null on $H$ which decompose as $M=m+v$, where $m$ is a càdlàg uniformly integrable martingale and, $v$ is a continuous process with integrable variations such that $v_{0}=0$ and $dv$ is carried by $H$. First, we extend this notion to stochastic processes not necessarily null on $H$, where $m$ is considered local martingale instead of a uniformly integrable martingale. Thus, we provide a general framework for the new larger class of relative martingales by presenting some structural properties. Second, as applications, we construct solutions for skew Brownian motion equations using continuous stochastic processes of the above mentioned new class. In addition, we investigate stochastic differential equations driven by a relative martingale.
Descargas
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



