The dot total graph of a commutative ring without the zero element
Resumen
Let $\mathcal{R}$ be a commutative ring with $1\neq 0$, $Z(\mathcal{R})$ be the set of zero-divisors of $\mathcal{R}$, and $Reg(\mathcal{R})=\mathcal{R}\setminus Z(\mathcal{R})$ be the set of regular elements of $\mathcal{R}$. The dot total graph of $\mathcal{R}$ is the simple (undirected) graph $T_{Z(\mathcal{R})}(\Gamma(\mathcal{R}))$ with vertices all elements of $\mathcal{R}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy\in Z(\mathcal{R})$. In this paper, we study the (induced) subgraph $T_{Z(\mathcal{R})}(\Gamma(\mathcal{R^{*}}))$ of $T_{Z(\mathcal{R})}(\Gamma(\mathcal{R}))$, with vertices $\mathcal{R^{*}}=\mathcal{R}\setminus \{0\}$. After that, connectivity, clique number, and girth of $T_{Z(\mathcal{R})}(\Gamma(\mathcal{R^{*}}))$ have also been studied. Finally, we determine the cases when $T_{Z(\mathcal{R})}(\Gamma(\mathcal{R^{*}}))$ is Eulerian, Hamiltonian, and $T_{Z(\mathcal{R})}(\Gamma(\mathcal{R^{*}}))$ contains an Eulerian trail.
Descargas
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).