On the mil graph of module over ring

  • Sanjoy Kalita Assam Don Bosco University
  • Basngewhun Syngai Assam Don Bosco University

Resumen

Let $M$ be an unital left module over a ring $R$ with unity. We define an undirected (\textit{nil graphs}) for the module $M$ as a graph whose vertex set is $M^*=M-{0}$ and any two distinct vertices $x$ and $y$, in these graphs, are adjacent if and only if there exist $r \in R$ such that $r^{2} (x+y) = 0$ and $r(x+y)\neq 0$. In this paper, we study the graph's adjacency, diameter, radius, and eulerian and hamiltonian properties. We also defined another nil graph $\Gamma^{*}_{N} (M)$, in which we reduced the vertex set to $N(M^*)$, set of all non-zero nil elements of the module, and keep the adjacency relation same as that of $\Gamma_{N} (M)$. We investigate the adjacency, diameter, radius, eulerian and hamiltonian properties of the graph $\Gamma^{*}_{N} (\mathbb{Z}_{p^n})$ and compare these properties among both the graphs.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Sanjoy Kalita, Assam Don Bosco University

Department of Mathematics

Basngewhun Syngai, Assam Don Bosco University

Department of Mathematics

Citas

Anderson, D. F.; Badawi, A.; The total graph of a commutative ring. Journal of algebra 320, No. 7, pg. 2706-2719, (2008).

Anderson, D. F.; Livingston, P. S.; The zero-divisor graph of a commutative ring, Journal of algebra 217, No. 2, pg.434-447, (1999).

Atani, S. E.; Habibi, S.; The total torsion element graph of a module over a commutative ring, An. St. Univ. Ovidius Constanta 19, No. 1, pg. 23-34, (2011).

Beck, I. Coloring of commutative rings, J. Algebra. 116(1): 208-226, (1988).

Behboodi, M.; Zero divisor graphs for modules over commutative rings, Journal of Commutative Algebra, Vol. 4, No. 2, p.g. 175-197, (2012).

Chen, P.W. A kind of graph structure of rings, Algebra Colloq. 10(2), 229-238, (2003).

Harary, F.; Graph Theory, Addison - Wesley Publishing Company, (1969).

Li, A. H. and Li, Q. S.; A Kind of Graph Structure on Von-Neumann Regular Rings, International Journal of Algebra, Vol. 4, No. 6, pg. 291 - 302, (2010).

Li, A.H., Li, Q.H; A Kind of Graph Structure on Non-reduced Rings, Algebra Colloq., Vol. 17, No.1, pg. 173–180, (2010).

Nikmehr, M. J and Khojasteh, S. On the nilpotent graph of a ring. Turkish Journal of Mathematics, 37(4), 553-559, (2013). https://doi.org/10.3906/mat-1112-35

Safaeeyan, S.; Baziar, M.; Momtahanin, E.; A generalization of the zero-divisor graph for modules, Journal of the Korean Mathematical Society, Vol. 51, no. 1, pg. 87-98, (2014).

Ssevviiri, D.; Groenewald N.; Generalization of Nilpotency of Ring Elements to Module Elements, Communications in Algebra Vol. 42, No. 2, pg. 571-577, (2014).

Ssevviiri, D.; On prime modules and radicals of modules, MSc. Treatise, Nelson Mandela Metropolitan University (2011).

Wisbauer, R.; Foundations of module and ring theory, Routledge, (2018).

Publicado
2024-05-21
Sección
Articles