Solving Bilevel quasimonotone variational inequality problem in Hilbert spaces

Abstract

In this paper, we propose and study a Bilevel quasimonotone Variational Inequality Problem (BVIP) in the frame work of Hilbert space. We introduce a new modified inertial iterative technique with self-adaptive step size for approximating a solution of the BVIP. In addition, we established a strong convergence result of the proposed iterative technique with an adaptive step-size conditions without prior knowledge of Lipschitz’s constant of the cost operators as well as the strongly monotonicity coefficient under some standard mild assumptions. Finally, we provide some numerical experiments to demonstrate the efficiency of our proposed methods in comparison with some recently announced results in the literature.

Downloads

Download data is not yet available.

Author Biographies

D. O. Peter, University of KwaZulu-Natal

Department of Mathematics

Akindele Adebayo Mebawondu, University of KwaZulu-Natal

Department of Computer Sciences and Mathematics

Godwin Ugwunnadi, Sefako Makgatho Health Sciences University

Department of Mathematics and Applied Mathematics

P. Pillay, University of KwaZulu-Natal

Depatment of Mathematics

Ojen Narain Kumar, University of KwaZulu-Natal

Department of Mathematics

References

P. K. Anh, T. V. Anh, and L. D. Muu,, On bilevel split pseudomonotone variational inequality problems with applications, Acta. Math. Vietnam, 42, (2017), 413–429.

R. Y. Apostol, A. A. Grynenko and V. V. Semenov, Iterative algorithms for monotone bilevel variational inequalities J. Comput. Appl Math., 107, (2012), 3–14.

C. Byrne , A unified treatment for some iterative algorithms in signal processing and image reconstruction, Inv. Probl., 20, (2004), 103–120.

L. C. Ceng, N. Hadjisavvas, and N. C. Wong, Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems, Glob. Optim., 46, (2020), 635–646.

L. C. Ceng, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148, (2011), 318–335.

Y. Censor, A. Gibali, and S. Reich, Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space, Optimization, 61, (2011), 1119–1132.

Y. Censor, A. Gibali, and S. Reich, The split variational inequality problem, The Technion-Israel Institute of Technology, Haifa, 59, (2012), 301–323.

Y. Censor, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 48, (2011), 318–335.

Y. Censor, A. Gibali, and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59, (2012), 301–323.

Y. Censor, T. Bortfeld, B. Martin, and A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51, (2006), 2353–2365.

Y. Censor, and T. Elfving, A multiprojection algorithm using Bregman projections in product space, Numer. Algorithms, (1994), 221–239.

P. Daniele, F. Giannessi, and A. Maugeri, Equilibrium problems and variational models, Dordrecht: Kluwer Academic, (2003).

G. Ficher, Sul pproblem elastostatico di signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur, 34, (1963), 138–142.

G. Ficher, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincci, Cl. Sci. Fis. Mat. Nat., Sez., 7, (1964), 91–140.

F. Akutsha, A. A. Mebawondu, H. A. Abass and O. K. Narain, A self adaptive method for solving a class of bilevel variational inequalities with split variational inequlaity and composed fixed point problem constraints in Hilbert spaces, Numerical Algebra, Control and Optimization, (2023), 1–22, https://doi.org/10.3934/naco.2021046.

F. Akutsha, A A. A. Mebawondu, G. C. Ugwunnadi and O. K. Narain, Inertial extrapolation method with regularization for solving monotone bilevel variation inequalities and fixed point problems in real Hilbert space, Journal of Nonlinear Functional Analysis, (2022), 1–20.

F. Akutsha, A. A. Mebawondu, G. C. Ugwunnadi, P. Pillay and O. K. Narain, IInertial extrapolation method with regularization for solving a new class of bilevel problem in real Hilbert spaces, SeMA Journal, 2022, 1–22.

F. Giannessi, A. Maugeri, and P. M. Pardalos, H-monotone operator and resolvent operator technique for variational inclusion, Dordrecht: Kluwer Academic, (2004).

J. Glackin, J. G. Ecker, and M. Kupferschmid, Solving bilevel linear programs using multiple objective linear programming, J. Optim Theory Appl., 140, (2009), 197–212.

A. A. Goldstein, Convex programming in Hilbert space Bull. Am. Math. Soc., 70, (1964), 709–710.

N. Hadjisavvas, and S. Schaible, Quasimonotone variational inequalities in Banach spaces, J. Optim. Theory Appl., 90, (1996), 95–111.

B. S. He and L. Z. Liao, Improvements of some projection methods for monotone nonlinear variational inequalities Optim Theory Appl., 112, (2002), 111–128.

H. He, C. Ling, and H. K. Xu, A relaxed projection method for split variational inequalities, J. Optim. Theory Appl., 166, (2015), 213–233.

G. M. Korpelevich, An extragradient method for finding saddle points and for other problems, Ekon. Mat. Metody., 12, (1976), 747–756.

H. Luiu and J. Yang, Weak convergence of iterative methods for solving quasimonotone variational inequalities, Computation Optimization and Applications, 77, (2020), 491-508.

Z. Q. Luo, J. S. Pang, and D. Ralph, Mathematical programs with equilibrium constraints, Cambridge, Cambridge University Press, 1996.

N. Nadezhkina, and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings J. Optim. Theory Appl., 128, (2006), 191–201.

P. E. Mainge ,A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J Control Optim., 12, (2008), 1499–1515.

N. H. Minh, L. H. M. Van and T. V. Anh, An algorithm for a class of bilevel variational inequality with split variational inequality and fixed point problem constraints, Acta Mathematica Vietnamica, https://doi.org/10.1007/s40306-020-00389-9.

N. Nadezhkina, and W. Takahashi, Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity Numerical Alg., 88, (2021), 1419–1456.

V. H. Pham, D. H. Nguyen, and T. V. Anh, A strongly convergent modified Halpern subgradient extragradient method for solving the split variational inequality problem, Vietnam J. Math. 48, (2020), 187–204.

B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Politehn Univ Buchar Sci Bull Ser A Appl Math Phys., 4, no. 5, (1964), 1–17

S. Reich and T. M. Tuyen, A new algorithm for solving the split common null point problem in Hilbert spaces, Numer. Algorithms, 83, (2020), 789–805.

S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal., 75, (2012), 742–750.

Y. Shehu, P. T. Vuong, A. Zemkoho,, An inertial extrapolation method for convex simple bilevel optimization, Optim Methods Softw., 2019. https://doi.org/10.1080/10556788.2019.1619729

G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Math. Acad. Sci., 258, (1964), 4413–4416.

M. Tian, and B. N. Jiang, Weak convergence theorem for a class of split variational inequality problems and applications in Hilbert space, J. Inequal. Appl., 123, (2017), 1–20.

B. Tan, L. Liu, and X. Qin,,elf adaptive inertial extragradient algorithms for solving bilevel pseudomonotone variational inequality problems, Applied Math., 2020. https://doi.org/10.1007/s13160-020-00450-y

D. V. Thong, X-H. Li, Q. L. Dong, Y. J. Cho, T. M. Rassias, A projection and contraction method with adaptive step sizes for solving bilevel pseudomonotone variational inequality problems, Optimization, (2020), DOI:10.1080/02331934.2020.1849206

C. R. Trujillo and S. Zlobec, Bilevel convex programming models, Optimization 58, (2009), 1009–1028.

Y. Yao, Muglia, and G. L.Marino, A modified Korpelevichs method convergent to the minimum-norm solution of a variational inequality, Optimization, 63, (2014), 559–569.

S. E. Yimer, P. Kuman, A. G. Gebrie, R. Wangkeeree, R., Inertial method for bilevel variational inequality problems with fixed point and minimizer point constraints, MDPI, Mathematics, 841, no. 7, (2019), doi:10.3390/math7090841.

L. Zheng, A double projection algorithm for quasimonotone variational inequalities in Banach spaces, Inequal. Appl., 123, (2018), 1–20.

Published
2024-05-24
Section
Articles