Lightlike sweeping surface and singularities in Minkowski 3-space E31
Resumo
In this work, we give the parametric equation of a lightlike sweeping surface in Minkowski 3.Space E31 . We introduce a new geometric invariant to explain the geometric possessions and local singularities of this lightlike sweeping surface. We extract the su¢ - cient and necessary conditions for this lightlike sweeping surface to be a spacelike/timelike developable ruled surface. Afterwards, we take advantage of singularity theory to give the categorization of singularities of this spacelike/timelike developable surface. Finally, we give several representative examples to o.er the implementations of the theoretical results.
Downloads
Referências
JW Bruce, and PJ Giblin. Curves and Singularities. 2nd ed. Cambridge, Cambridge University Press, 1992.
R. Cipolla, and PJ. Giblin. Visual movment of Curves and Surfaces, Cambridge Univ. Press, 2000.
K. Saji, M. Umehara, and K. Yamada. The geometry of fronts. Ann Math. (2009);169:491-529.
Y. Kitagawa, and M. Umehara. Extrinsic diameter of immersed flat tori in s3. Geom Dedicata. (2011); 155: 105-140.
K. Teramoto. Parallel and dual surfaces of cuspidal edges. Differential Geom Appl. (2016); 44:52-62.
MP. do Carmo. Differential Geometry of Curves and Surface, Prentice-Hall, Englewood Cliffs, NJ, 1976.
Z. Xu, and R. Sun Feng. Analytic and algebraic properties of canal surfaces, J. of Comput. and Applied Maths. 195 (2006), 220-228.
S. Izumiya, K. Saji, and N. Takeuchi. Circular surfaces, Advances in Geometry, 7 (2), (2007), 295–313.
JS. Ro and DW. Yoon. Tubes of weingarten types in Euclidean 3-space,” J. of the Chungcheong Math. Society, vol. 22, no. 3, (2009), 359–366.
L. Cui, D. L Wang, and J.S. Dai. Kinematic geometry of circular surfaces with a fixed radius based on Euclidean invariants,” ASME J. Mech. Vol. 131, October (2009).
RA. Abdel-Baky, and Y. Unluturk. On the curvatures of spacelike circular surfaces, Kuwait Journal of Science, Vol. 43 No. 3 (2016).
RA. Abdel-Baky, N. Alluhaibi, A. Ali and F. Mofarreh. A study on timelike circular surfaces in Minkowski 3-space, Int. J. Geom. Methods Mod. Phys. Vol. 17, No. 06, 2050074 (2020).
MF. Naghi and RA. Abdel-Baky. Timelike sweeping surfaces and singularities, Int. J. Geom. Methods Mod. Phys. Vol. 18, No. 01, 2150006 (2021).
Y. Li, F. Mofarreh, and RA. Abdel-Baky. Timelike circular surfaces and singularities in Minkowski 3-space, Symmetry (2022), 14, 1914. https://doi.org/10.3390/sym14091914.
RL. Bishop. There is more than one way to frame a curve. Amer. Math. Monthly 82, (1975), 246–251.
F. Klok. Two moving coordinate frames for sweeping along a 3D trajectory. Comput. Aided Geom. Design 3, (1986), 217–229.
W. Wang, and B. Joe. Robust computation of the rotation minimizing frame for sweep surface modelling. Computer-Aided Design (1997); 29:379–91.
W. Wang, B. Juttler, D. Zheng, andY. Liu. Computation of rotating minimizing frames. ACM Transactions on Graphics (2008); 27: 1-18.
B. Bukcu and M. K. Karacan. On the slant helices according to Bishop frame of the timelike curve in Lorentzian space, Tamkang J. Math. 39(3) (2008), 255–262.
M. Grbovic and E. Neˇsovic. On the Bishop frames of pseudo null and null Cartan curves in Minkowski 3-space, J. Math. Anal. Appl. 461 (2018), 219–233.
O. Keskin and Y. Yayli. An application of N-Bishop frame to spherical images for direction curves, Int. J. Geom. Methods Mod. Phys. 14(11) (2017), 1750162 (21 pages).
B. O’Neil. Semi-Riemannian Geometry geometry, with applications to relativity, Academic Press, New York, 1983.
J. Walfare. Curves and Surfaces in Minkowski Space, Ph.D. Thesis, K.U. Leuven, Faculty of Science, Leuven, 1995.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



