Improvement of the piecewise polynomial collocation method for Fredholm integro-differential equations
Résumé
In this work, in the first step,
the error estimation by using defect correction principle
is studied for
the numerical approximation of Fredholm integro-differential equations.
Based on theoretical study, it is shown that
for $m$ degree piecewise
polynomial collocation method, the deviation of the error is
$\mathcal{O}(h^{m+1})$.
In the next step by using the deviation of the error the collocation solution has been improved.
Also in the last step of this paper, simulated results to investigate the theory results are given.
Téléchargements
Références
H. Singh, H. Dutta and M.M. Cavalcanti, Topics in Integral and Integro-Differential Equations, Springer International Publishing, (2021).
W. Volk, The iterated Galerkin methods for linear integro differential equations, J. Comp. Appl. Math., 21 (1988) 63-74.
A. Zhou, An extrapolation method for finite element approximation of integro-differential equations with parameters, Syst. Sci. and Math., 3 (1990) 278-285.
L. Zada, M. Al-Hamami, R. Nawaz, S. Jehanzeb, A. Morsy, A. Abdel-Aty and K. S. Nisar, A new approach for solving fredholm integro-differential equations, Inf. Sci. Let., 10(3) (2021) 3.
B. Tair, H. Guebbai, S. Segni and M. Ghiat, An approximation solution of linear Fredholm integro-differential equation using Collocation and Kantorovich methods, J. Appl. Math. Comput., 68(5) (2022) 3505-3525.
R.J. Hangelbroek, H.G. Kaper and G.K. Leaf, Collocation methods for integro-differential equations, SIAM J. Numer. Anal., 14 (1977) 377-390.
H. Brunner, A. Pedas and G. Vainikko, On the numerical solution of nonlinear volterra integro-differential equation, BIT, 18 (1973) 381-390.
C.D. Boor and B. Swartz, Collocation at Gaussian points, SIAM J. Numer. Anal., 10 (1973) 582-606.
Y. Wang, J. Huang and H. Li, A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations, Numer. Algorithms, (2023) 1-23.
S Yuzbası, Fractional Bell collocation method for solving linear fractional integro-differential equations, Math. Sci., (2022) 1-12.
S Yuzbası, Shifted Legendre method with residual error estimation for delay linear Fredholm integro-differential equations, J. Taibah Univ. Sci. 11(2) (2017) 344-352.
K.D. Kucche and S.T. Sutar, On existence and stability results for nonlinear fractional delay differential equations, Bol. Soc. Parana. Mat., 36(4) (2018) 55-75.
M. Karacayir and S Yuzbası, A Galerkin-type approach to solve systems of linear Volterra-Fredholm integro-differential equations, Turk. J. Math., 46(8) (2022) 3121-3138.
S Yuzbası, Numerical solutions of system of linear Fredholm–Volterra integro-differential equations by the Bessel collocation method and error estimatio, Appl. Math. Comput., 250 (2015) 320-338.
H.M. Arafa, and M.A. Ramadan, Bernoulli wavelet method for numerical solution of linear system of Fredholm integral equation of the second kind. Alex. Eng. J., 77 (2023) 63-74.
S Yuzbası, Improved Bessel collocation method for linear Volterra integro-differential equations with piecewise intervals and application of a Volterra population model, Appl. Math. Model., 40(9-10) (2016) 5349-5363.
S.S. Ahmed and S.J. MohammedFaeq, Bessel collocation method for solving Fredholm–Volterra integro-fractional differential equations of multi-high order in the caputo sense, Symmetry, 13(12) (2021) 2354.
S Yuzbası and G. Yildirim, Pell-Lucas collocation method to solve high-order linear Fredholm-Volterra integrodifferential equations and residual correction, Turk. J. Math., 44(4) (2020) 1065-1091.
H. Chen, W. Qiu, M.A. Zaky and A.S. Hendy, A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel, Calcolo, 60(1) (2023) 13.
S Yuzbası and M. Sezer, A numerical method to solve a class of linear integro-differential equations with weakly singular kernel, Math. Methods Appl. Sci., 35(6) (2012) 621-632.
H.J. Stetter, The defect correction principle and discretization methods, Numer. Math., 29 (1978) 425-443.
K. Bohmer, P.Hemker and H. J.Stetter, The defect correction approach, Computing, Suppl., 5 (1984) 1-32 .
W. Auzinger, O. Koch, and A. Saboor Bagherzadeh, Error estimation based on locally weighted defect for boundary value problems in second order ordinary differential equations, BIT. Numer. Math., 54 (2014) 873-900.
A. Saboor Bagherzadeh, Defect-based error estimation for higher order differential equations, PhD thesis, Vienna University of Technology, (2011).
T. Tang, H. Xie, and X. Yin, High-order convergence of spectral deferred correction methods on general quadrature nodes, J. Sci. Comput., 56(1) (2013) 1-13.
A. Dutt, L. Greengard, V. Rokhlin, Spectral deferred correction methods for ordinary differential equations, BIT Numer. Math., 40(2) (2000) 241-266.
M. Zarebnia, R. Parvaz, and A.S. Bagherzadeh, Deviation of the error estimation for Volterra integro-differential equations, Acta Math. Sci., 38(4) (2018) 1322-1344.
R. Parvaz, M. Zarebnia, and A.S. Bagherzadeh, An improved algorithm based on deviation of the error estimation for first-order integro-differential equations, Soft Comput., 23 (2019) 7055-7065.
R. Parvaz, M. Zarebnia, and A.S. Bagherzadeh, A Study of Error Estimation for Second Order Fredholm Integro-Differential Equations, Indian J. Pure Appl. Math., 51(3) (2020) 1203-1223.
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Third edition, Springer-Verlg, (2002).
H. Danfu and S. Xufeng, Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integration, Appl. Math. Comput., 194(2) (2007) 460-466.
P. Darania, A. Ebadian, A method for the numerical solution of the integro-differential equations, Appl. Math. Comput.,188 (2007) 657-668.
M.I. Berenguer, M.V. Fernandez Munoz, A.I. Garralda-Guillem and M. Ruiz Galan, A sequential approach for solving the Fredholm integro-differential equation, Appl. Numer. Math., 62(4) (2012) 297-304.
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



