Existence result of entropy solution for degenerate elliptic problem without monotonicity condition in Generalized Sobolev spaces

  • Abdelkarim DERHAM
  • Badr EL HAJI LABORATOIR LAMA, FEZ
  • Ouidad Azraibi

Resumen

In the present paper we prove some existence results of entropy solution for nonlinear degenerate elliptic problems of the form
$A u+h(x, u)=f,$ in Musielak-Orlicz-Sobolev spaces,
where $A(u)=-\mbox{div }(a(x,u,\nabla u))$
is a Leray-Lions, operator defined form the musielak-Orlicz-sobolev spaces $ W_{0}^{1}L_{\varphi}(\Omega) $ into its dual.The right hand side $f \in L^{1}(\Omega),$ and no monotonicity strict condition is assumed on the function $a(x, s, \xi)$, The tool we use to overcome this difficulty is to
investigate some techniques introduced by Minty's lemma.

Descargas

La descarga de datos todavía no está disponible.

Citas

Y. Akdim, ,E. Azroul, M.Rhoudaf; Existence of T-solution for degenerated problem via Minty’s Lemma. Acta Math. sinica (English Ser.) 24, 431 − 438(2008).

M. Ait Khellou, A. Benkirane,S.M. Douiri, Some properties of Musielak spaces with only the log-Holder continuity condition and application Annals of Functional Analysis,Tusi Mathematical Research Group (TMRG) 2020.DOI: 10.1007/s43034-020-00069-7.

S. Ait Dada Alla, O. Azraibi, and B. El Haji, On some nonlinear elliptic equations with measurable boundary conditions in anisotropic weighted Sobolev spaces. Gulf Journal of Mathematics, 17(1), 130-141. https://doi.org/10.56947/gjom.v17i1.1712

O. Azraibi, D. Abdelkarim and B. El Haji, ; On some anisotropic elliptic problem with measure data. Int. J. Nonlinear Anal. Appl. 16 (2025) 5, 1-11 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2024.33483.4992.

O. Azraibi, S. Ait Dada Alla and B. El Haji, On some nonlinear elliptic probles with boundary conditions in generalized sobolev spaces, J. Nonlinear Funct. Anal. 2024 (2024) 19 https://doi.org/10.23952/jnfa.2024.19

O. Azraibi, B.EL haji and M. Mekkour, Nonlinear parabolic problem with lower order terms in Musielak-Sobolev spaces without sign condition and with Measure data, Palestine Journal of Mathematics,Vol. 11(3)(2022) , 474-503.

O. Azraibi, B.EL haji and M. Mekkour, On some Nonlinear elliptic problems with large monotonicity in Musielak-Orlicz-Sobolev spaces, , Journal of Mathematical Physics, Analysis, Geometry 2022, Vol. 18, No. 3,1-18.

A. Benkirane, A. Elmahi; Almost everywhere convergence of the gradient of solutions to elliptic equations in Orlicz spaces, Nonlinear Anal. T.M.A. 28(11)(1997), 1769-1784.

A. Benkirane and M. Sidi El Vally, Some approximation properties in Musielak-Orlicz- Sobolev spaces,: Thai.J. Math. 10, (2012) 371-381.

A. Benkirane, and M. Sidi El Vally, Variational inequalities in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin 21, (2014) 787-811.

L. Boccardo, L.Orsina, Existence results for Dirichlet problems in L1 via Minty’s lemma. Appl. Anal. 76(3−4), 309−317(2000).

B. El Haji and M. El Moumni and A. Talha, Entropy solutions for nonlinear parabolic equations in Musielak Orlicz spaces without Delta2-conditions, Gulf Journal of Mathematics Vol 9, Issue 1 (2020) 1-26.

B. El Haji and M. El Moumni; Entropy solutions of nonlinear elliptic equations with L1-data and without strict monotonocity conditions in weighted Orlicz-Sobolev spaces, Journal of Nonlinear Functional Analysis, Vol. 2021 (2021), Article ID 8, pp. 1-17

B. El Haji, M. El Moumni, K. Kouhaila; On a nonlinear elliptic problems having large monotonocity with L1−data in weighted Orlicz-Sobolev spaces ,Moroccan J. of Pure and Appl. Anal. (MJPAA) Volume 5(1), 2019, Pages 104-116 DOI 10.2478/mjpaa-2019-0008

B. El Haji and M. El Moumni and K. Kouhaila; Existence of entropy solutions for nonlinear elliptic problem having large monotonicity in weighted Orlicz-Sobolev spaces , LE MATEMATICHE Vol. LXXVI (2021) - Issue I, pp. 37-61, https://doi.org/10.4418/2021.76.1.3.

N. El Amarti, B. El Haji and M. El Moumni. Entropy solutions for unilateral parabolic problems with L1-data in Musielak-Orlicz-Sobolev spaces Palestine Journal of Mathematics, Vol. 11(1)(2022) , 504-523.

R. Elarabi, M. Rhoudaf, H. Sabiki, Entropy solution for a nonlinear elliptic problem with lower order term in Musielak-Orlicz spaces. Ric. Mat. (2017). https://doi.org/10.1007/s11587-017-0334-z

J. P. Gossez, Some approximation properties in Orlicz-Sobolev spaces, Studia Math. 74 (1982), no. 1, 17-24.

J. P. Gossez and V. Mustonen; Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal. 11 (1987), no. 3, 379-392.

E.Hewitt, K.Stromberg, Real and Abstract Analysis. Springer, Berlin (1965)

J. Musielak, Modular spaces and Orlicz spaces, Lecture Notes in Math. 1034 (1983).

A. Porretta, Existence results for strongly nonlinear parabolic equations via strong conver- gence of truncations, Annali di matematica pura ed applicata. (IV), Vol. CLXXVII (1999) 143-172.

Publicado
2025-04-30
Sección
Research Articles