h-Ricci soliton and Gradient h-Ricci soliton on para-Kenmotsu manifold

Resumo

The current paper examines the h-Ricci soliton and gradient h-Ricci soliton on a para-Kenmotsu manifold when h has a definite signal. Firstly
we show that h-Ricci soliton on the present manifold is Einstein whenever the
potential vector field V is contact, and if the potential vector field V is collinear
with the Reeb vector field ξ, then the manifold is η-Einstein manifold. Next,
we prove that a η-Einstein para-Kenmotsu metric as an h-Ricci soliton reduces
to Einstein manifold. Finally, we show that a similar result occurs in the case
of gradient h-Ricci soliton.

Downloads

Não há dados estatísticos.

Biografia do Autor

Sangeetha M, Bangalore University

Department of Mathematics

H. G. Nagaraja , Bangalore University

Department of Mathematics.

Referências

A. Barros, E. Ribeiro, Jr., Some characterizations for compact almost Ricci solitons, Proc. Amer. Math. Soc., 140(3): 1033-1040, (2012).

D. S. Patra, Ricci solitons and paracontact geometry, Mediterr. J. Math., 16(6): 137-149, (2019).

D. S. Patra, Ricci solitons and Ricci almost solitons on para-Kenmotsu manifold, Bull. Korean Math. Soc., 56(5): 1315–1325, (2019).

F. Mofarreh, U. C. De, A note on Ricci soliton in almost Kenmotsu manifold, arXiv preprint arXiv:1805.04451 (2018).

G. Calvaruso, D. Perrone, Geometry of h-paracontact metric manifolds, Publ. Math. Debrecen, 86(3-4): 325-346, (2015).

G. Yun, J. Co, S. Hwang, Bach-flat h-almost gradient Ricci solitons, Pacific J. Math., 288(2): 475-488, (2017).

H. Faraji, S. Azami, G. Fasihi-Ramandi, Fasihi-Ramandi, h-almost Ricci solitons with concurrent potential fields, AIMS Math., 5(5): 4220-4228, (2020).

J. N. Gomes, Q. Wang, C. Xia, On the h-almost Ricci soliton, J. Geom. Phys., 114: 216-222, (2017).

K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(2): 93-103, (1972).

K. Yano, Integral formulas in Riemannian geometry, Pure and Applied Mathematics, No. 1, Marcel Dekker, Inc., New York, (1970).

R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., 71: 237-261, (1988).

S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99: 173-187, (1985).

S. Pigola et al., Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10(5): 757-799, (2011).

S. Sarkar, S. Dey, X. Chen, Certain results of conformal and ∗-conformal Ricci soliton on para-cosymplectic and para-Kenmotsu manifolds, Filomat, 35(15): 5001-5015, (2021).

Publicado
2025-04-17
Seção
Artigos