Essential ideal of a matrix nearring and ideal related properties of graphs
Resumen
In this paper, we consider matrix maps over a zero-symmetric right nearring $N$ with 1. We define the notions of essential ideal, superfluous ideal, generalized essential ideal of a matrix nearring and prove results which exhibit the interplay between these ideals and the corresponding ideals of the base nearring $N$. We discuss the combinatorial properties such as connectivity, diameter, completeness of a graph (denoted by $\mathcal{L}_{g}(H)$) defined on generalized essential ideals of a finitely generated module $H$ over $N$. We prove a characterization for $\mathcal{L}_{g}(H)$ to be complete. We also prove $\mathcal{L}_{g}(H)$ has diameter at-most 2 and obtain related properties with suitable illustrations.
Descargas
Citas
J. Amjadi, The essential ideal graph of a commutative ring, Asian-European Journal of Mathematics, 11, no.2, (2018), doi: https://doi.org/10.1142/S1793557118500584.
Anderson D. F., Asir T., Badavi A., Tamizh Chelvam T., Graphs from rings, Springer Nature, 2021.
F. W. Anderson, K.R. Fuller, Rings and categories of modules, Springer Verlag, Newyork, Inc. no.2 (1988), doi: https://doi.org/10.1007/978-1-4612-4418-9.
A. P. J. Van Der Walt, Primitivity in matrix nearrings, Queast Math., 9(1-4), 459-469, (1986).
S. Babaei, S. Payrovi, E. S. Sevim, On the annihilator ideals and the annihilator essential graph, Acta Mathematica Vietnamica, 44, no. 4, 905-914, (2019), doi: 10.1007/s40306-018-00306-1.
B. S. Kedukodi, B. Jagadeesha, S. P. Kuncham, J. Suresh Different prime graphs of a nearring with respect to an ideal, In: Nearrings, Nearfields and Related Topics. World Scientific, Singapore, 185-203, (2017).
S. Bhavanari, Modules with finite spanning dimension, Journal of Australian Mathematical Society, 57, no. 2, 170-178, (1994), doi: https://doi.org/10.1017/S1446788700037502.
S. Bhavanari, S. P. Kuncham, On Finite Goldie Dimension of Mn(N)-Group Nn, Nearrings and Nearfields(Editors:nHubert Kiechle, Alexander Kreuzer and MommeJhs Thomsen), (Proc. 18th International Conference on Nearrings and Nearfields, Universitat Bundeswar, Hamburg, Germany July 27-Aug 03, 2003, Springer Verlag, Netherlands, 301–310, (2003).
S. Bhavanari, S. P. Kuncham, Nearrings, fuzzy ideals, and graph theory, CRC press, (Taylor and Francis, U.K.,U.S.A.), (2013).
S. Bhavanari, S.P. Kuncham, Discrete mathematics and graph Theory, Prentice Hall India learning Ltd,(2nd Edition), (2014).
S. Bhavanari, S.P. Kuncham, N. Dasari, Prime graph of a ring, Journal of Combinatorics, Information and System Sciences, 35, 27-42, (2010).
S. Bhavanari, S.P. Kuncham, B.S. Kedukodi, Graph of a nearring with respect to an ideal, Communications in Algebra, 38, 1957-1967,(2010), doi: https://doi.org/10.1080/00927870903069645.
S. Bhavanari, R. Lokeswara, S.P. Kuncham, A note on primeness in nearrings and matrix nearrings, Indian Journal of Pure and Applied Mathematics, 27, 227-234,(1996).
G. L. Booth, N. J. Gronewald, On primeness in matrix nearrings, Arch. Math., 56, no. 6, (1991), 539-546.
G. A. Cannon, K.M. Neuerburg, S.P.Redmond, Zero-divisor graphs of nearrings and semigroups, In Nearrings and Nearfields. Springer, 189-200, (2005), doi: https://doi.org/10.1007/1- 4020-3391-5.
B. W. Green, L. Van Wyk, On the small and essential ideals in certain classes of rings, Journal of the Australian Mathematical Society, 46, no. 2, 262-271, (1989), doi: https:// doi.org/10.1017/S144678870003072X.
S. P. Kuncham, B. S. Kedukodi, P. K. Haririshnan, S. Bhavanari, K. Neuerburg, G. L. Booth, B. Davvaz, M. Farag, S. Juglal, A. Badavi (Eds.), Nearrings, nearfields and related topics, World Scientific (Singapore), (2017) ISBN:978-981- 3207-35-6.
J. Matczuk, A. Majidinya, Sum-essential graphs of modules, Journal of Algebra and Its Applications, 20, no. 11,(2021), doi: https://doi.org/10.1142/S021949882150211X.
J. D. P. Meldrum, A. Van der Walt, Matrix near-rings, Archiv der Mathematic, 47, no. 4, 312–319, (1986),doi: https://doi.org/10.1007/BF01191356.
C. Nebiyev, On supplement element in lattices, Miskloc Mathematical Notes, 20, no. 1, 441-449, (2019).
C. Nebiyev, C. Bicer, A. Pancar, Generalized supplemented lattices, Miskloc Mathematical Notes, 19, no. 1, 141-147, (2018).
M. J. Nikmehr, R. Nikandish, M. Bakhtyiari , On the essential graph of a commutative ring, Journal of Algebra and Its Applications, 16, no. 7, (2017), doi: https://doi.org/10.1142/S0219498817501328.
G. Pilz, Nearrings: the theory and its applications, North Holland Publishing Company, 23, (1983).
Rajani, S., Tapatee S., Harikrishnan P. Kuncham S.P.: Superfluous ideals of N-groups. Rend. Circ. Mat. Palermo, II. Ser (2023). https://doi.org/10.1007/s12215-023-00888-2.
S. Tapatee, B. S. Kedukodi, S. Juglal, P. K. Harikrishnan, S. P. Kuncham, Generalization of prime ideals in Mn(N)-group Nn, Rendiconti del Circolo Mathematico di Palermo, 72, no. 2, 449-465, (2023), doi:https://doi.org/10.1007/s12215-021-00682-y.
S. Tapatee, P.K. Harikrishnan, B.S. Kedukodi, S.P. Kuncham, Graphs with respect to superfluous elements in a lattice, Miskolc Mathematical Notes, 23, no. 2, 929-945, (2022), doi:10.1142/S1793557120500230.
S. Tapatee, J. H. Meyer, P.K. Harikrishnan, B.S. Kedukodi, S.P. Kuncham, Partial order in matrix nearrings, Bulletin of the Iranian Mathematical Society, 48, 3195-3209, (2022), doi: https://doi.org/10.1007/s41980-022-00689-w.
D. X. Zhou, X. R. Zhang, Small-essential ideals and morita duality, Southeast asian bulletin of mathematics, 35, 1051-1062, (2011).
Derechos de autor 2024 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).