Multiplicity of weak solutions for a class of quasilinear elliptic Neumann problems using Variational methods
Resumen
The existence of infinitely many weak solutions for the strongly nonlinear elliptic equation of the
form
$$\left\{\begin{array}{ll}
-\mathrm{div}\Big( w_{1}(x)|\nabla u|^{p(x)-2}\nabla u\Big) + w_{0}(x){\mid u \mid}^{p(x)-2}u = f(x,u)+ g(x,u) \quad &\mbox{in} \quad \Omega, \\
\frac{\partial u}{\partial \gamma}=0\quad \textrm{on }\partial \Omega.
\end{array}\right.$$
is proved by applying a critical point variational principle obtained by B. Ricceri in weighted variable exponent Sobolev space $W^{1,p(\cdot)}(\Omega,w_{0},w_{1})$.
Descargas
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).