Super-recurrence for backward shifts
Resumen
In this paper, we characterize the super-recurrence of backward shifts acting on the weighted sequence spaces $\ell^{p}(\mathbb{Z},\nu)$ for $1 \leq p<\infty$ and $c_{0}(\mathbb{Z},\nu),$ where $v:=\left(v_{n}\right)_{n}$is a strictly positive sequence of weights. As a result, we show that supercyclic and super-recurrent backward shifts are equivalent.
We also prove that there are no super-recurrent backward shifts neither on $\ell^{\infty}(\mathbb{N},\nu)$ nor on $\ell^{\infty}(\mathbb{Z},\nu).$
Descargas
La descarga de datos todavía no está disponible.
Citas
M. Amouch, O. Benchiheb, On a class of super-recurrent operators. Filomat. 36.11, 2022.
M. Amouch, O. Benchiheb, Some versions of supercyclicity of a set of operators. Filomat. 35.5, 1619-1627, 2021.
F. Bayart, E. Matheron, Dynamics of linear operators. New York, NY, USA, Cambridge University Press 2009.
A. Bonilla, K. G. Grosse-Erdmann, A. López-Martínez, A. Peris, Frequently recurrent operators. Journal of Functional Analysis, 109713, 2022.
J. Bonet, F. Mart\'{\i}nez-Giménez, A. Peris, Linear chaos on Fréchet spaces. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13.7, 1649-1655, 2003.
G.D. Birkhoff, Surface transformations and their dynamical applications. Acta Math. 43, 1-119, 1920.
G. Costakis, A. Manoussos, I. Parissis, Recurrent linear operators. Complex Anal. Oper. Theory. 8, 1601-1643, 2014.
G. Costakis, I. Parissis, Szemerédi's theorem, frequent hypercyclicity and multiple recurrence. Mathematica Scandinavica. 251--272, 2012.
N. S. Feldman, The dynamics of cohyponormal operators. Contemp. Math. 321, Amer. Math. Soc. 71-85, 2003.
K.-G. Grosse-Erdmann, A. Peris Manguillot, Linear Chaos. Universitext, Springer-Verlag, 2011.
K.-G. Grosse-Erdmann, Universal families and hypercyclic operators. Bull. Amer. Math. Soc. 36, 345-381, 1999.
H.M. Hilden, L.J. Wallen, Some cyclic and non-cyclic vectors of certain operators. Indiana Univ. Math. J. 23, 557-565, 1974.
H. Minkowski, H. Poincaré, Sur le problème des trois corps et les équations de la dynamique. J. F. M. 22, 907-914, 1890.
A. Montes-Rodr\'{\i}guez, H.N. Salas, Supercyclic subspaces, spectral theory and weighted shifts. Adv. Math. 163, 74–134, 2001.
S. Rolewics, On orbits of elements. Studia Math. 32, 17-22, 1969.
H. N. Salas, Supercyclicity and weighted shifts. Studia Math. 135, 55–74, 1999.
M. Amouch, O. Benchiheb, Some versions of supercyclicity of a set of operators. Filomat. 35.5, 1619-1627, 2021.
F. Bayart, E. Matheron, Dynamics of linear operators. New York, NY, USA, Cambridge University Press 2009.
A. Bonilla, K. G. Grosse-Erdmann, A. López-Martínez, A. Peris, Frequently recurrent operators. Journal of Functional Analysis, 109713, 2022.
J. Bonet, F. Mart\'{\i}nez-Giménez, A. Peris, Linear chaos on Fréchet spaces. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13.7, 1649-1655, 2003.
G.D. Birkhoff, Surface transformations and their dynamical applications. Acta Math. 43, 1-119, 1920.
G. Costakis, A. Manoussos, I. Parissis, Recurrent linear operators. Complex Anal. Oper. Theory. 8, 1601-1643, 2014.
G. Costakis, I. Parissis, Szemerédi's theorem, frequent hypercyclicity and multiple recurrence. Mathematica Scandinavica. 251--272, 2012.
N. S. Feldman, The dynamics of cohyponormal operators. Contemp. Math. 321, Amer. Math. Soc. 71-85, 2003.
K.-G. Grosse-Erdmann, A. Peris Manguillot, Linear Chaos. Universitext, Springer-Verlag, 2011.
K.-G. Grosse-Erdmann, Universal families and hypercyclic operators. Bull. Amer. Math. Soc. 36, 345-381, 1999.
H.M. Hilden, L.J. Wallen, Some cyclic and non-cyclic vectors of certain operators. Indiana Univ. Math. J. 23, 557-565, 1974.
H. Minkowski, H. Poincaré, Sur le problème des trois corps et les équations de la dynamique. J. F. M. 22, 907-914, 1890.
A. Montes-Rodr\'{\i}guez, H.N. Salas, Supercyclic subspaces, spectral theory and weighted shifts. Adv. Math. 163, 74–134, 2001.
S. Rolewics, On orbits of elements. Studia Math. 32, 17-22, 1969.
H. N. Salas, Supercyclicity and weighted shifts. Studia Math. 135, 55–74, 1999.
Publicado
2025-12-04
Número
Sección
Research Articles
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



