Multiplicity of solutions for anisotropic Dirichlet problem with variable exponent
Resumo
We establish some results on the existence of multiple nontrivial solutions for a general anisotropic elliptic equations. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces,
combined with adequate variational methods and a variant of the Mountain Pass lemma.
Downloads
Referências
M. M. Boureanu, F. Preda, Infinitely many solutions for elliptic problems with variable exponent and nonlinear boundary conditions, Nonlinear Differ. Equ. Appl. 19 (2012), 235-251.
M. M. Boureanu,and V. Rădulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal. 75 (2012), 4471-4482.
M. M. Boureanu, D. Udrea; Existence and multiplicity results for elliptic problems with p(.)-growth conditions, Nonlinear Anal: Real W. Appl., 14 (2013), 1829-1844.
L. Diening, P. Harjulehto, P. Hästö, M. R˙užička, Lebesgue and Sobolev Spaces with Variable Exponents, in: Lecture Notes in Mathematics, vol. 2017, Springer-Verlag,Heidelberg,2011.
D. E. Edmunds, J. Lang, A. Nekvinda, On Lp(x) norms. Proc. R. Soc. A 455 (1999), 219-225.
A. EL Amrouss, A. El Mahraoui, Infinitely many solutions for anisotropic elliptic equations with variable exponent, Proyecciones Journal of Mathematics Vol. 40, No 5,(2021) 1071-1096.
A. R. EL Amrouss, F. Kissi, Multiplicity of solutions for a general p(x)-Laplacian Dirichlet problem, Arab J Math Sci 19(2) (2013), 205–216.
B. EL Lahyani, A. EL Hachimi, existence and multiplicity of solutions for anisotropic elliptic problems with variable exponent and nonlinear robin boundary conditions, Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 188, pp. 1-17.
X. L. Fan and D. Zhao, On the Spaces Lp(x)( ) and Wm,p(x)( ), J. Math. Anal. Appl., 263 (2001), 424-446.
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1998.
O. Kováčik, J. Rákosník, On spaces Lp(x) and W1,p(x). Czech. Math. J. 41 (1991), 592- 618.
S. N. Kruzhkov, I. M. Kolodi, On the theory of embedding of anisotropic Sobolev spaces, Russian Math. Surveys. 38 (1983), 188-189.
M. Mihailescu, G. Morsanu, on an eigenvalue problem for anisotropic elliptic equations involving variable exponents, Math.J 52 (2010), 517-527.
M. Mihailescu, P. Pucci, V. Rˇadulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), 687-698.
J. Rákosnik, Some remarks to anisotropic Sobolev space I,Beiträge zur Analysis 13 (1979) 55-68.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).