Skew-product and peripheral local spectrum preservers

  • YOUSSEF CHAKIR IBN ZOHR UNIVERSITY, POLYDISCIPLINARY FACULTY OF TAROUDANT
  • EL HOUCINE EL BOUCHIBTI Ibn Zohr Univercity, Polydisciplinary Faculty of Taroudant https://orcid.org/0009-0004-0133-7032

Resumen

Let H and K be two infinite-dimentional complex Hilbert spaces, and fix two nonzero vectors h0 ∈ H and k0 ∈ K. Let L (H) (resp. L (K)) denote the algebra of all bounded linear operators on H (resp. on K), and let γT(x) be the peripheral local spectrum of an operator T at x, and let Fn(K) be the ideal of all operators in L (K) of rank at most n. We show that if the maps φ1 : L(H) → L(K) and φ2 : L(H) → L(K) satisfy
                      γTS*(h0) = γφ1(T )φ2(S)* (k0)
for all T, S ∈ L (H), and their range containing F2(K), then there exist bijective linear operators U : H → K and V : K → H such that φ1(T) = UTV and φ2(T)*= V−1T*U−1 for all T ∈ L(H). Furthermore,
some interesting results are obtained in this direction.

Descargas

La descarga de datos todavía no está disponible.
Publicado
2025-01-23
Sección
Research Articles