Additive mapping acting as generalized (mu; nu)-derivation on semi-prime rings

  • Muzibur Rahman Mozumdr Aligarh Muslim University
  • Abu Zaid Ansari Islamic University of Madinah
  • Arshad Madni Aligarh Muslim University

Resumen

The objective of this paper is to study the following: Let A be a (m+n 􀀀 1)!-torsion free semi-prime ring. Suppose that G; g : A ! A are two additive mappings satisfying the algebraic identity G(rm+n) = G(rm)(rn) + (rm)g(rn)
for all r 2 A: Then G will be a generalized (; )-derivation with associated (; )-derivation g on A. On the other hand, it is proved that G1 is a generalized left (; )-derivation associated with left (; )-derivation g1 on A if they satisfy the algebraic identity G1(rm+n) = (rn)G1(rm) + (rm)g1(rn) for all r 2 A. We will also examine criticism and provide example.

Descargas

La descarga de datos todavía no está disponible.

Citas

S. Ali, On generalized left derivations in rings and Banach algebras, Aequat. Math. 81, 209-226 (2011).

S. Ali, and C.Haetinger, Jordan -centralizer in rings and some applications, Bol. Soc. Paran. Mat. 26, 71-80 (2008).

A. Z. Ansari, Additive mappings satisfying algebraic identities in semi-prime rings, Discussiones Mathematicae - General Algebra and Applications, 43 (2), 327-337 (2023).

A. Z. Ansari, and N. Rehman, Identities on additive mappings in semi-prime rings, Matematychni Studii, 58(2), 133-141 (2022).

A. Z. Ansari, and F. Shujat, Jordan -derivations on standard operator algebras, Filomat 37:1, 37–41 (2023).

M. Ashraf, and S. Ali, On generalized Jordan left derivations in rings, Bull. Korean Math. Soc. 45(2), 253-261 (2008).

J. M. Cusack, Jordan derivations in rings, Proc. Amer. Math. Soc. 53(2), 321-324 (1975).

I. N. Herstein, Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1104-1110 (1957).

C. Lanski, Generalized derivations and n-th power maps in rings, Comm. Algebra 35, 3660-3672 (2007).

E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 1093-1100 (1957).

F. Shujat, A. Z. Ansari, and F. Salama, Additive mappings act as a generalized left (, )-derivation in rings, Bollettino dell’Unione Matematica Italiana, 12, 425–430 (2019).

F. Shujat, and A. Z. Ansari, Additive mappings covering generalized (1, 2)-derivations in semiprime rings, Gulf Journal of Mathematics, 11(2), 19-26 (2021).

J. Vukman, On left Jordan derivations on rings and Banach algebras, Aequationes Math. 75, 260-266 (2008).

S.M.A. Zaidi, M. Ashraf, and S. Ali, On Jordan ideals and left (, )-derivation in prime rings, Int. J. Math. and Math. Sci. 37, 1957-1965 (2004).

B. Zalar, On centralizers of semi-prime rings, Comment. Math. Univ. Carol., 32, 609-614 (1991).

J. Zhu, and C. Xiong, Generalized derivations on rings and mappings of P-preserving kernel into range on Von Neumann algebras, Acta Math. Sinica 41, 795-800 (1998).

Publicado
2025-07-03
Sección
Articles