Fixed Point Theorems with PPF Dependence for (α, β)-F Contraction in Razumikhin Class
Resumen
In this paper, we provide a novel idea of (α, β)-F contractive, weak (α, β)-F contractive
and generalized (α, β)-F contractive nonself mappings. We establish the existence of fixed
point results with PPF dependence in Razumikhin class. Some examples are also provided to
support our conclusions.
Descargas
La descarga de datos todavía no está disponible.
Citas
[1] Abbas, M. and Nazir, T. Common fixed point of a power graphic contraction pair in partial
metric spaces endowed with graph. Fixed Point Theory Appl. 2013.
[2] Agarwal, R.P., Hussain, N. and Taoudi, M.A. Fixed point theorems in ordered Banach spaces
and applications to nonlinear integral equations. Abstr. Appl. Anal. 2012.
[3] Agarwal, R.P., Kumam, P. and Sintunavarat, W. PPF dependent fixed point theorems for
an αc-admissible nonself-mapping in the Razumikhin class. Fixed Point Theory Appl. 2013.
[4] Ahmad, A.G.B., Fadail, Z., Nashine, H.K., Kadelburg, Z. and Radenovi´c, S. Some new
common fixed point results through generalized altering distances on partial metric spaces.
Fixed Point Theory Appl. 2012.
[5] Babu, G., Satyanarayana, G., and Vinod Kumar, M. (2019). Properties of razumikhin class
of functions and ppf dependent fixed points of weakly contractive type maps. Bull. Int. Math.
Virtual Inst, 9(1), 65-72.
[6] Bernfeld, S.R., Lakshmikatham, V. and Reddy, Y.M. Fixed point theorems of operators with
PPF dependence in Banach spaces. Appl. Anal., 6, 271–280, 1977.
[7] Chandok, S. Some fixed point theorems for (α, β)-admissible Geraghty type contractive
mappins and related results. Math Sci. 2015.
[8] Cho, Y. J., Rassias, T. M., Salimi, P., and Turinici, M. Some PPF dependent fixed point
theorems for new contractions in Banach spaces. Preprint, 1(2.5), 2-6, 2014.
[9] Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc.
Am. Math. Soc., 136, 1359–1373, 2008.
[10] Karapinar, E. and Samet, B. Generalized (α − ψ) contractive type mappings and related
fixed point theorems with applications. Abstr. Appl. Anal. 2012.
[11] Kutbi, M.A., Hussain, N. and Khaleghizadeh, S. New PPF dependent fixed point theorems
for Suzuki type GF-contractions. Jounal of Fiunction Spaces. 2015.
[12] Kutbi, M.A. and Sintunavarat, W. On sufficient conditions for the existence of past-presentfuture dependent fixed point in the Razumikhin class and application. Abstr. Appl. Anal.
2014.
[13] Samet, B., Vetro, C. and Vetro, P. Fixed point theorem for α−ψ contractive type mappings.
Nonlinear Anal., 75, 2154–2165, 2012.
[14] Salimi, P., Latif, A. and Hussain, N. Modified α−ψ-contractive mappings with applications.
Fixed Point Theory Appl. 2013.
[15] Salimi, P., Vetro, C. and Vetro, P. Fixed point theorems for twisted (α, β) − ψ-contractive
type mappings and applications., 27, 605–615, 2013.
[16] Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces.
Fixed PoinT Theory Appl. 2012.
metric spaces endowed with graph. Fixed Point Theory Appl. 2013.
[2] Agarwal, R.P., Hussain, N. and Taoudi, M.A. Fixed point theorems in ordered Banach spaces
and applications to nonlinear integral equations. Abstr. Appl. Anal. 2012.
[3] Agarwal, R.P., Kumam, P. and Sintunavarat, W. PPF dependent fixed point theorems for
an αc-admissible nonself-mapping in the Razumikhin class. Fixed Point Theory Appl. 2013.
[4] Ahmad, A.G.B., Fadail, Z., Nashine, H.K., Kadelburg, Z. and Radenovi´c, S. Some new
common fixed point results through generalized altering distances on partial metric spaces.
Fixed Point Theory Appl. 2012.
[5] Babu, G., Satyanarayana, G., and Vinod Kumar, M. (2019). Properties of razumikhin class
of functions and ppf dependent fixed points of weakly contractive type maps. Bull. Int. Math.
Virtual Inst, 9(1), 65-72.
[6] Bernfeld, S.R., Lakshmikatham, V. and Reddy, Y.M. Fixed point theorems of operators with
PPF dependence in Banach spaces. Appl. Anal., 6, 271–280, 1977.
[7] Chandok, S. Some fixed point theorems for (α, β)-admissible Geraghty type contractive
mappins and related results. Math Sci. 2015.
[8] Cho, Y. J., Rassias, T. M., Salimi, P., and Turinici, M. Some PPF dependent fixed point
theorems for new contractions in Banach spaces. Preprint, 1(2.5), 2-6, 2014.
[9] Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc.
Am. Math. Soc., 136, 1359–1373, 2008.
[10] Karapinar, E. and Samet, B. Generalized (α − ψ) contractive type mappings and related
fixed point theorems with applications. Abstr. Appl. Anal. 2012.
[11] Kutbi, M.A., Hussain, N. and Khaleghizadeh, S. New PPF dependent fixed point theorems
for Suzuki type GF-contractions. Jounal of Fiunction Spaces. 2015.
[12] Kutbi, M.A. and Sintunavarat, W. On sufficient conditions for the existence of past-presentfuture dependent fixed point in the Razumikhin class and application. Abstr. Appl. Anal.
2014.
[13] Samet, B., Vetro, C. and Vetro, P. Fixed point theorem for α−ψ contractive type mappings.
Nonlinear Anal., 75, 2154–2165, 2012.
[14] Salimi, P., Latif, A. and Hussain, N. Modified α−ψ-contractive mappings with applications.
Fixed Point Theory Appl. 2013.
[15] Salimi, P., Vetro, C. and Vetro, P. Fixed point theorems for twisted (α, β) − ψ-contractive
type mappings and applications., 27, 605–615, 2013.
[16] Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces.
Fixed PoinT Theory Appl. 2012.
Publicado
2025-12-06
Número
Sección
Research Articles
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



