Inner higher derivations on Hilbert C$ ^* $-modules
Resumen
Let $ \mathcal{M} $ be a Hilbert C$ ^* $-module. We define a product $ \pi_\textbf{e} $ on $ \mathcal{M} $, making $ \mathcal{M} $ into a Banach algebra.
Then we study inner derivations and inner higher derivations of Banach algebra $ (\mathcal{M},\pi_\textbf{e}) $. We
find the general form of the family of inner derivations corresponding to an inner higher derivation on
unital Banach algebra $ (\mathcal{M},\pi_\textbf{e}) $, with the identity element $ 1_\mathcal{M} $. We show that if $ \{v_n\}_{n=0}^\infty $ and $ \{w_n\}_{n=0}^\infty $ are sequences in $\mathcal{M}$ such that $ v_0=w_0=1_\mathcal{M} $ and
$ (\textbf{v}*\textbf{w})_n=(\textbf{w}*\textbf{v})_n=0 $ for all $ n \in \mathbb{N} $
and $\{\varphi_n\}_{n=0}^\infty$ is the inner higher derivation on $ (\mathcal{M},\pi_\textbf{e}) $ defined by
\[ \varphi_n(x)=\sum_{i=0}^n \langle v_i,\textbf{e}\rangle \langle x,\textbf{e}\rangle w_{n-i} \]
for all $ x \in \mathcal{M} $ and each non-negative integer $ n $,
then the corresponding sequence of inner derivations $\{\psi_n\}_{n=1}^\infty$, defined on $ (\mathcal{M},\pi_\textbf{e}) $ by
\begin{align*}
\psi_n(x)&=\Big\langle \sum_{i=1}^n\Big(\sum_{\sum_{j=1}^i r_j=n}(-1)^{i-1}~r_1\langle v_{r_1},\textbf{e}\rangle \langle v_{r_2},\textbf{e}\rangle\ldots \langle v_{r_{i-1}},\textbf{e}\rangle v_{r_{i}}\Big),\textbf{e}\Big\rangle x\\
&+\langle x,\textbf{e} \rangle \sum_{i=1}^n\Big(\sum_{\sum_{j=1}^i r_j=n}(-1)^{i-1}~r_i\langle w_{r_1},\textbf{e}\rangle \langle w_{r_2},\textbf{e}\rangle \ldots \langle w_{r_{i-1}},\textbf{e}\rangle w_{r_i}\Big)\nonumber
\end{align*}
for all $ x \in \mathcal{M} $ and all $ n \in \mathbb{N} $.
Descargas
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).
 
   
                                                                                                                                             
                                                                                                                                                                                  
			
		 
			 
			 
				



