Recognizing simple projective linear groups PSL(p; q) by their order and one conjugacy class length

  • Alireza Khalili Asboei
  • Amirmohammad Momeni Kohestani

Resumen

Let r = (q^p−1)/(q−1)(p,q−1) be a prime number, where q is a prime power and p is an odd prime. In this paper, we will show that G  = PSL(p; q) if and only if jGj = jPSL(p; q)j and G has a conjugacy class of size jGL( (qp-p;q 1))j.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ahanjideh N, On Thompson’s conjecture for some finite simple groups, J. Algebra, 344 (2011), 205-228.

Ahanjideh N, On the Thompson’s conjecture on conjugacy classes sizes, Internat. J. Algebra Comput, 23(1) (2013), 37-68.

Asboei A. K, Mohammadyari R, Rahimi M, New characterization of some linear groups, Int. J. Industrial Mathematics, 8(2) (2016, 165-170.

Amiri S. S. S, Asboei A. K, Characterization of some finite groups by order and length of one conjugacy class Sib. Math. J, 57(2) (2016), 185-189.

Asboei A. K, Mohammadyari R, Recognizing alternating groups by their order and one conjugacy class length J. Algebra. Appl, 15(2) (2016), DOI: 10.1142/S0219498816500213.

Asboei A. K, Mohammadyari R, Characterization of the Alternating groups by their order and one conjugacy class length Czechoslovak Math. J, 66(141) (2016), 63-70.

Asboei A. K, Mohammadyari R, New characterization of symmetric groups of prime degree, Acta Univ. Sapientiae, Math, 9(1) (2017), 5-12.

Asboei A. K, A new characterization of PSL(3, q), Jordan J. Math. Stat, 10(4), (2017), 307-317.

Asboei A. K, Characterization of PSL(5, q) by its order and one conjugacy class size, Iran. J. Math. Sci. Inform,15(1), (2020), 35-40

Chen G Y, On Frobenius and 2-Frobenius group, J. Southwest China Normal Univ, 20 (1995), 485-487. (in Chinese)

Chen G. Y, On Thompson’s conjecture, J. Algebra, 185(1) (1996), 184-193.

Chen G. Y, A new characterization of sporadic simple groups, Algebra Colloq, 3(1) (1996), 49-58.

Chen G. Y, Further reflections on Thompson’s conjecture, J. Algebra, 218 (1999), 276-285.

Chen Y, Chen G. Y, Recognizing PSL(2, p) by its order and one special conjugacy class size, J. Inequal. Appl, (2012), 310.

Chen Y. H, Chen G. Y, Recognization of Alt10 and PSL(4, 4) by two special conjugacy class size, Italian J. Pure Appl. Math, 29 (2012), 387-394.

Conway J. H, Curtis R. T, Norton S. P, Wilson R. A, Atlas of finite groups, Clarendon, Oxford, 1985.

Iiyori N, Yamaki H, Prime graph components of the simple groups of Lie type over the field of even characteristic, J. Algebra, 155(2) (1993), 335-343.

Li J. B, Finite groups with special conjugacy class sizes or generalized permutable subgroups (2012) (Chongqing: Southwest University).

Khosravi A, Khosravi B, A new Characterization of PSL(p, q), Commun Algebra, 32(6) 2004, 2325-2339.

Khukhro E. I, Mazurov V. D, Unsolved Problems in Group Theory, The Kourovka Notebook, 17th edition, Sobolev Institute of

Mathematics, Novosibirsk, 2010.

Kondtratev A. S, Mazurove V. D, Recognition of alternating groups of prime degree from their element orders, Sib. Math. J, 41(2) (2000), 294-302.

Steinberg, R, Automorphism of finite linear groups, Canad. J. Math, 12 (1960), 606–615.

Williams J. S, Prime graph components of finite groups, J. Algebra, 69(2) (1981), 487–513.

Zsigmondy K, Zur Theorie der Potenzreste, Monatsh. Math. Phys, 3(1) (1892), 265-284.

Publicado
2025-03-24
Sección
Research Articles