<b>On the index complex of a maximal subgroup and the group-theoretic properties of a finite group</b> - doi: 10.5269/bspm.v23i1-2.7458

  • Lining Jiang Beijing Institute of Technology
  • Wang Xiaojing Beijing Institute of Civil Eng. and Arch.

Resumen

Let G be a finite group, S^p(G); \Phi'(G) and \Phi_1(G) be generalizations of the Frattini subgroup of G. Based on these characteristic subgroups and using Deskins index complex, this paper gets some necessary and suffcient conditions for G to be a p-solvable, \pi-solvable, solvable, super-solvable and nilpotent group.

Descargas

La descarga de datos todavía no está disponible.
Sección
Articles