<b>On the index complex of a maximal subgroup and the group-theoretic properties of a finite group</b> - doi: 10.5269/bspm.v23i1-2.7458
Resumen
Let G be a finite group, S^p(G); \Phi'(G) and \Phi_1(G) be generalizations of the Frattini subgroup of G. Based on these characteristic subgroups and using Deskins index complex, this paper gets some necessary and suffcient conditions for G to be a p-solvable, \pi-solvable, solvable, super-solvable and nilpotent group.Descargas
La descarga de datos todavía no está disponible.
Número
Sección
Articles
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).