Domatic polynomials of $\Gamma(Z(R)):$ the zero-divisor graphs of commutative rings

  • Indrajit Narah NIT Arunachal Pradesh
  • Karam Ratan Singh

Resumen

The domatic polynomial $DP(G, x)$ of a graph $G$ is defined as $DP(G,x)= \sum_{j=1}^{d(G)} dp(G,j) x^j$, where $dp(G,j)$ represents the number of domatic partition of $G$ with size $j$. In this paper, we find domatic number and domatic polynomial of $\Gamma(Z_n)$ where $n \in \{2s, s^2, st, s^2t,stu,s^\alpha\}$ for distinct prime numbers $s, t\; \text{and}\; u$ with $\alpha >2$ and their roots. Further, we discuss a characterization on $DP(\Gamma(R),x)$. Finally, we establish that their domatic polynomials possess the properties of log-concavity and unimodality.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ahmadi, M.R., Nezhad, R. J., Energy and Wiener index of zero-divisor graphs, Iranian Journal of Mathematical Chemistry 2.1 (Special Issue on the Occasion of Mircea V. Diudea’s Sixtieth Birthday), 45-51, (2011).

Akbari, S., Mohammadian, A., On the zero-divisor graph of a commutative ring, Journal of algebra 274(2), 847-855, (2004).

Alikhani, S., Bakhshesh, D., Ghanbari,N.,Counting the number of domatic partition of a graph, arXiv preprint arXiv:2407.00103 (2024).

Alikhani, S., Peng, Y. H., Introduction to domination polynomial of a graph, arXiv preprint arXiv:0905.2251 (2009).

Anderson, D. F., Livingston, P. S., The zero-divisor graph of a commutative ring, Journal of Algebra 217, 434-447, (1999).

Asir, T., Rabikka, V., The Wiener index of the zero-divisor graph of Zn, Discrete Applied Mathematics 319, 461-471, (2022).

Beck, I., Coloring of commutative rings, Journal of algebra 116(1), 208-226, (1988).

Chattopadhyay, S., Patra, K. L., Sahoo, B. K., Laplacian eigenvalues of the zero divisor graph of the ring Zn, Linear Algebra and its applications 584, 267-286, (2020).

Goddard, W., Henning, M. A., Independent domination in graphs, A survey and recent results, Discrete Mathematics 313(7), 839-854, (2013).

Gursoy, N. K., Ulker, A., G¨ursoy, A., Independent domination polynomial of zero-divisor graphs of commutative rings, Soft Computing 26(15), 6989-6997, (2022).

Hardy, G., Littlewood, J. E., Polya, G.,Inequalities, Cambridge university press, (1952).

Haynes, T. W., Hedetniemi, S., Slater, P., Fundamentals of domination in graphs, CRC press, (2013).

Henning, M. A., Total Domination in Graphs, Springer Monographs in Mathematics/Springer, (2013).

Lucas, T.G., The diameter of a zero-divisor graph, J. Algebra 301(1), 174- 193, (2006).

Narah, I., Singh, K. R., On the domatic Polynomial of graphs.

Narah, I., Singh, K. R., A characterization on the domatic polynomials.

Young, M., Adjacency matrices of zero-divisor graphs of integers modulo n, Involve, a Journal of Mathematics 8( 5), 753-761, (2015).

Zelinka, B., Domination in generalized Petersen graphs, Czechoslovak Mathematical Journal, 52(1), 11-16, (2002).

Zelinka, B., Domatic number of a graph and its variants, In Annals of Discrete Mathematics 51, 363-369, (1992).

Zelinka, B., Domatic number and degrees of vertices of a graph, Mathematica Slovaca 33(2), 145-147, (1983).

Zelinka, B., On domatic numbers of graphs, Mathematica Slovaca, 31(1), 91-95, (1981).

Publicado
2025-08-11
Sección
Research Articles