Zeta functions of isogeny graphs and spectral properties of adjacency operators
Resumen
We introduce an \emph{augmented Ihara zeta function} for supersingular $\ell$‑isogeny graphs that records both the degree label and the orientation determined by dual isogenies. A Bass–Hashimoto style determinant formula is proved, and we show that the resulting zeta function factors as the characteristic polynomial of the Hecke operator $T_{\ell}$ acting on weight‑$2$ cusp forms of level~$p$. Deligne’s bound on Hecke eigenvalues then yields a \emph{uniform Ramanujan property} for supersingular isogeny graphs with any prime $\ell<p/4$. We extend the zeta formalism to non‑regular ordinary \emph{isogeny volcanoes}, derive a rationality result, and relate the dominant pole to the volcano height. Finally, explicit cycle‑counting formulas lead to an equidistribution theorem for cyclic isogeny chains, confirmed by numerical experiments for primes $p\le 1000$ and $\ell\in\{2,3,5\}$
Descargas
Citas
H. Bass, The Ihara–Selberg zeta function of a tree lattice, Int. J. Math. 3 (1992), 717–797. doi:10.1142/S0129167X9200038X
G. Bisson and A. V. Sutherland, Computing the endomorphism ring of an ordinary elliptic curve over a finite field, J. Number Theory 131 (2011), 815–831. doi:10.1016/j.jnt.2010.09.008
T. G. Centeleghe, The adjacency matrix of the supersingular ℓ-isogeny graph and the Eichler trace formula, J. Number Theory 131 (2011), 1797–1807. doi:10.1016/j.jnt.2011.04.005
P. Deligne, La conjecture de Weil I, Publ. Math. Inst. Hautes Etudes Sci. 43 (1974), 273–307. doi:10.1007/BF02684373
M. Eichler, Quaternare quadratische Formen und die Riemannsche Vermutung fur die Kongruenzzetafunktion, Arch. Math. 5 (1954), 355–366.
M. Fouquet and F. Morain, Isogeny volcanoes and the SEA algorithm, In ANTS-V, Lect. Notes Comput. Sci. 2369, Springer, 2002, pp. 276–291.
K. Hashimoto, Zeta functions of finite graphs and representations of p-adic groups, Adv. Stud. Pure Math. 15 (1989), 211–280.
Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219–235. doi:10.2969/jmsj/01820219
D. Kohel, Endomorphism Rings of Elliptic Curves over Finite Fields, Ph.D. thesis, University of California, Berkeley, 1996.
E. Kowalski, The Large Sieve and Its Applications, Cambridge Tracts in Math. 175, Cambridge Univ. Press, 2008.
A. Lubotzky, High dimensional expanders, Proc. Int. Congr. Math. 2018, Vol.2, World Scientific, 2019, pp.705-730. doi:10.1142/9789813272880 0041
A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), 261–277. doi:10.1007/BF02126799
W. Bosma, J. Cannon, C. Playoust et al., The Magma algebra system, Version 2.28-8, http://magma.maths.usyd.edu. au, 2024.
A. Pizer, Ramanujan graphs and Hecke operators, Bull. Amer. Math. Soc. 23 (1990), 127–137. doi:10.1090/S0273-0979-1990-15912-2
The Sage Developers, SageMath, the Sage Mathematics Software System, Version 10.4, 2025. https://www.sagemath.org
P. Sarnak, Some Applications of Modular Forms, Cambridge Tracts in Math. 99, Cambridge Univ. Press, 1990.
R. Schoof, Counting points on elliptic curves over finite fields, J. Theor. Nombres Bordeaux 7 (1995), 219–254. doi:10.5802/jtnb.110
J.-P. Serre, Repartition asymptotique des valeurs propres de l’operateur de Hecke, J. Amer. Math. Soc. 10 (1985), 75–102.
H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996), 124–165. doi:10.1006/aima.1996.0073
A. Terras, Zeta Functions of Graphs, CBMS Regional Conference Series in Mathematics, Vol. 128, Amer. Math. Soc., 2011.
M.-F. Vigneras, Arithmetique des algebres de quaternions, Lecture Notes in Math. 800, Springer, 1980.
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



