Statistical Semi-convergence in Topological Framework
Resumen
This paper explains a novel concept of statistical semi-convergence under the context of topology. The classical idea of statistical convergence is expanded to encompass a larger class of sequences in the conventional topological sense by using semi-open sets. The connection between statistical semi-convergence and other recognized types of convergence is also examined. The Uniqueness of the limit of statistical semi-convergence and preservation under semi-continuous function has been established. In addition to providing new analytical methods for handling sequences in more extended topological spaces, this work expands the application of convergence theory. Lastly, the concept of statistical semi-limit point and statistical semi-cluster point has also been discussed.
Descargas
Citas
\bibitem{bal1} Bal P., De R., {\em On strongly star semi-compactness of topological spaces}, Khayyam Journal of Mathematics 9(1), 54--60, (2023).
\bibitem{bhunia} Bhunia S., Das P., Pal S. K. {\em Restricting statistical convergence},
Acta Math. Hungar. 134 (1-2), 153-161, (2012).
\bibitem{cross1} Crossley S. G., Hildebrand S. K., {\em Semi-closure}, Texas J. Sci. 22, 99--112, (1971).
\bibitem{cross2} Crossley S. G., Hildebrand S. K., {\em Semi-topological properties}, Fund. Math. 74, 233--254, (1972).
\bibitem{Das1973} Das P., {\em Note on some applications of semi-open sets}, Progress Math. 7, 33--44, (1973).
\bibitem{das02} Das P., Bal P., {\em Applications of semi-convergence in advanced topological frameworks}, (communicated).
\bibitem{king} R. Engelking, {\em General Topology}, Heldermann Verlag, Berlin, (1989).
\bibitem{fast} Fast H., {\em Sur la convergence statistique}, Colloq. Math. 2, 241--244, (1951).
\bibitem{fri} Fridy J. A., {\em On statistical convergence}, Analysis 5, 301--313, (1985).
\bibitem{gupta1} Gupta M. K., Gupta S., Goel S., {\em On Some New Approaches in Statistical Convergence}, Palest. J. Math, (2025).
\bibitem{levine} Levine N., {\em Semi-open sets and semi-continuity in topological space}, Amer. Math. Monthly 70, 36--41, (1963).
\bibitem{maio} Maio G. D., Ko\v cinac L. D. R., {\em Statistical Convergence in Topology}, Topology and its applications 156, 28--45, (2008).
\bibitem{nour} Nour T. M., {\em A note on some applications of semi-open sets}, International Joournal Of Mathematics and Mathematical Sciences 21(1), 205--207, (1998).
\bibitem{sarkar1} Sarkar S., Bal P., {\em Some Alternative Interpretations of Strongly Star Semi-Rothberger and Related Spaces}, Tatra Mt. Math. Publ. 86, 21--30, (2024).
\bibitem{scho} Schoenberg I. J., {\em Integrability of certain functions and related summability methods}, Amer. Math. Monthly 66, 361--375, (1959).
\bibitem{zy} A. Zygmund, {\em Trigonometrical series}, Monogr. Mat., Warszawa, PWN-Panstwowe Wydawnictwo Naukowe, Warszawa 5, (1935).
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



