Generalized Homogeneous q-Shift Operator Applied for Generalized Cigler's Polynomials
Resumen
In this paper, we establish the generalized homogeneous q-shift operator E(q^\alpha z\theta_{xy}) and the generalized Cigler's polynomials D^{(\alpha-n)}_n(\sigma_1, \cdots, \sigma_{r},\rho_1,\cdots, \rho_s,x,y,z). Then, we apply this operator to derive some q-identities such as: the generating function and its extension, Rogers formula and its extension, Mehler's formula and its extension, Srivastava-Agarwal type bilinear generating functions to the polynomials D^{(\alpha-n)}_n(\sigma_1, \cdots, \sigma_{r},\rho_1,\cdots, \rho_s,x,y,z). In addition, we supply some special values for the identities of D^{(\alpha-n)}_n(\sigma_1, \cdots, \sigma_{r},\rho_1,\cdots, \rho_s,x,y,z) in order to establish the same identities for the polynomials D^{(\alpha-n)}_{n}(x,y,b) and \Psi_n^{(\textbf{a},\textbf{b})}(x,y,z|q).
Descargas
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



