Exploring graph energies of k-copies of complete graph Kn with a common vertex

Resumen

In this study, we have calculated the energy, Seidel energy, and distance energy for k-copies of
the complete graph Kn, where the graphs share a single common vertex. Additionally, we derived expressions
for the Laplacian energy, Laplacian distance energy, and Laplacian Seidel energy for these graphs. To facilitate
these computations, we also developed a Python code that generates the corresponding energy values.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

RAJESH KANNA M R, Professor of Mathematics

Dr. RAJESH KANNA M R

Professor Department Mathematics, Sri D. Devaraja Urs Governement First Grade College, Hunsur-571105, Mysore District, Karnataka, India. Phone/Fax No: 08222-252069
Sowmya N K, Research Scholar, Department of Mathematics, Sri D. Devaraja Urs Government First Grade College, Hunsur-571105, Karnataka, India. (A recognised Research Centre of University of Mysore)

Research Scholar,
Department of Mathematics,
Sri D. Devaraja Urs Government First Grade College,
Hunsur-571105, Karnataka, India.
(A recognised Research Centre of University of Mysore)

Roopa S, Associate Professor of Mathematics

ROOPA S,

Associate Professor
Department of Mathematics,
Governament College for Women, Maddur 571428, Karnataka, India.
E-mail address: rooopa.s.kumar@gmail.com

Citas

1. D. Cvetkovi´c, I. Gutman, Applications of graph spectra, Math. Inst., Belgrade, (2009).
2. D. Cvetkovi´c, I. Gutman, Selected topics on applications of graph spectra, Math. Inst., Belgrade, (2011).
3. I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz 103, 1–22, (1978).
4. I. Gutman, O. E. Polansky, Mathematical concepts in organic chemistry, Springer, Berlin, (1986).
5. I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.),
Algebraic Combinatorics and Applications, Springer, Berlin, pp. 196–211, (2001).
6. R. L. Graham, H. O. Pollak, On the addressing problem for loop switching, Bell Syst. Tech. J. 50, 2495–2519, (1971).
7. H. S. Ramane, D. S. Revankar, I. Gutman, S. B. Rao, B. D. Acharya, H. B. Walikar, Bounds for the distance energy
of a graph, Kragujevac J. Math. 31, 59–68, (2008).
8. G. Indulal, I. Gutman, A. Vijayakumar, On the distance energy of a graph, MATCH Commun. Math. Comput. Chem.
60, 461–472, (2008).
9. W. H. Haemers, Seidel switching and graph energy, MATCH Commun. Math. Comput. Chem. 68, 653–659, (2012).
10. I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414, 29–37, (2006).
11. F. Harary, Graph theory, Addison-Wesley Publ., (1969).
12. I. Gutman, B. Furtula, The total π-electron energy saga, Croat. Chem. Acta 90, 359–368, (2017).
13. I. Gutman, B. Furtula, Energies of graphs — survey, census, bibliography, Center Sci. Res., Kragujevac, (2019).
14. X. Li, Y. Shi, I. Gutman, Graph energy, Springer, New York, (2012).
Publicado
2025-11-01
Sección
Research Articles