THE Minimum Pendant Dominating Randic Graph Energy
Resumen
In this research paper, we introduce the concept of Minimum Pendant Dominating Randic Graph Energy, denoted by , and compute its value for several well-known graph families, including the complete graph, complete bi- partite graph, bi-star graph, cocktail party, and barbell graph. Additionally, we investigate theoretical upper and lower bounds for , offering insights into the behavior and range of this energy measure across various classes of graphs.
Descargas
La descarga de datos todavía no está disponible.
Citas
[1] C. Adiga, A. Bayad, I. Gutman and S. A. Srinivas (2012) – “The minimum covering energy of a graph” - Kragujevac Journal of Science, volume 34, pages 39 - 56.
[2] S. Alikhani and N. Ghanbari (2015), “Randić energy of specific graphs”, Applied Mathematics and Computation, volume 269, pages 722 - 730. DOI: 10.1016/j.amc.2015.07.112
[3] R. Balakrishnan (2004), “The energy of a graph”, Linear Algebra and its Applications, volume 387, pages 287 – 295. https://doi.org/10.1016/j.laa.2004.02.038
[4] Ş. B. Bozkurt, A. D. Güngör, I. Gutman and A. S. Çevik (2010), “Randić Matrix and Randić Energy”, MATCH Communications in Mathematical and in Computer Chemistry, volume 64, pages 239 - 250 [On line]. Available: https://bit.ly/3iChvsG
[5] Ş. B. Bozkurt, A. D. Güngör, and I. Gutman (2010), “Randić Spectral Radius and Randić Energy”, MATCH Communications in Mathematical and in Computer Chemistry, volume 64, pages 321 - 334.
[6] Z. Chu, S. Nazeer, T. J. Zia, I. Ahmed and S. Shahid (2019), “Some New Results on Various Graph Energies of the Splitting Graph”, Journal of Chemistry, volume 2019, Article ID 7214047, pages 12. DOI: 10.1155/2019/7214047
[7] D. Cvetković, P. Rowlinson and S. Simić (2010), “An Introduction to The Theory of Graph Spectra”, (London Mathematical Society Student Texts, No. 75). Cambridge, UK: Cambridge University Press.
[8] S. C. Gong, X. Li, G. H. Xu, I. Gutman and B. Furtula (2017), “Border energetic Graphs”, MATCH Communications in Mathematical and in Computer Chemistry, volume 77, pages 589 – 594.
[9] I. Gutman (1978), "The Energy of a Graph", Berichte der Mathematisch-Statistischen Sektion im Forschungszentrum Graz, volume 103, pages 1 – 22.
[10] I. Gutman and B. Furtula (2008), “Recent results in the theory of Randić index”, (Mathematical Chemistry Monographs No. 6), Kragujevac, Serbia: University of Kragujevac.
[11] I. Gutman, B. Furtula and S. B. Bozkurt (2014), “On Randic Energy”, Linear Algebra and its Applications, volume 442, pages 50 – 57. DOI: 10.1016/j.laa.2013.06.010
[12] X. Li and I. Gutman, (2006), “Mathematical aspects of Randić type molecular structure descriptors”, (Mathematical Chemistry Monographs No. 1). Kragujevac, Serbia: University of Kragujevac.
[13] X. Li, Y. Shi and I. Gutman (2010), “Graph Energy”, New York, NY: Springer. https://doi.org/10.1007/978-1-4614-4220-2
[14] M. Randić (1975), “Characterization of molecular branching”, Journal of the American Chemical Society, volume 97(23), pages 6609 – 6615. https://doi.org/10.1021/ja00856a001
[15] M. Randić (2008), “On history of the Randić index and emerging hostility towards chemical graph theory”, MATCH Communications in Mathematical and in Computer Chemistry, volume 59(1), pages 5 – 124. Retrieved from https://bit.ly/3ZyjnDm
[16] O. Rojo and L. Medina, (2012), “Construction of bipartite graphs having the same Randić energy”, MATCH Communications in Mathematical and in Computer Chemistry, volume 68(3), pages 805 – 814. Retrieved from https://bit.ly/3J7HHEb
[17] P. Siva Kota Reddy, K. N. Prakash and V. M. Siddalingaswamy (2017), “Minimum dominating Randić energy of a graph”, Vladikavkaz Mathematical Journal, volume 19(2), Article ID 6506. https://doi.org/10.23671/VNC.2017.2.6506
[18] S. K. Vaidya and G. K. Rathod (2021), “Randić energy of various graphs”, Advances and Applications in Discrete Mathematics, volume 28(2), pages 267 – 286. https://doi.org/10.17654/dm028020267
[19] H. B. Walikar, H. S. Ramane and P. R. Hampiholi, (1999), “On the energy of a graph”, In R. Balakrishnan, H. M. Mulder, and A. Vijaykumar (Eds.), Graph Connections, pages 120–123 New Delhi, India: Allied Publishers
[2] S. Alikhani and N. Ghanbari (2015), “Randić energy of specific graphs”, Applied Mathematics and Computation, volume 269, pages 722 - 730. DOI: 10.1016/j.amc.2015.07.112
[3] R. Balakrishnan (2004), “The energy of a graph”, Linear Algebra and its Applications, volume 387, pages 287 – 295. https://doi.org/10.1016/j.laa.2004.02.038
[4] Ş. B. Bozkurt, A. D. Güngör, I. Gutman and A. S. Çevik (2010), “Randić Matrix and Randić Energy”, MATCH Communications in Mathematical and in Computer Chemistry, volume 64, pages 239 - 250 [On line]. Available: https://bit.ly/3iChvsG
[5] Ş. B. Bozkurt, A. D. Güngör, and I. Gutman (2010), “Randić Spectral Radius and Randić Energy”, MATCH Communications in Mathematical and in Computer Chemistry, volume 64, pages 321 - 334.
[6] Z. Chu, S. Nazeer, T. J. Zia, I. Ahmed and S. Shahid (2019), “Some New Results on Various Graph Energies of the Splitting Graph”, Journal of Chemistry, volume 2019, Article ID 7214047, pages 12. DOI: 10.1155/2019/7214047
[7] D. Cvetković, P. Rowlinson and S. Simić (2010), “An Introduction to The Theory of Graph Spectra”, (London Mathematical Society Student Texts, No. 75). Cambridge, UK: Cambridge University Press.
[8] S. C. Gong, X. Li, G. H. Xu, I. Gutman and B. Furtula (2017), “Border energetic Graphs”, MATCH Communications in Mathematical and in Computer Chemistry, volume 77, pages 589 – 594.
[9] I. Gutman (1978), "The Energy of a Graph", Berichte der Mathematisch-Statistischen Sektion im Forschungszentrum Graz, volume 103, pages 1 – 22.
[10] I. Gutman and B. Furtula (2008), “Recent results in the theory of Randić index”, (Mathematical Chemistry Monographs No. 6), Kragujevac, Serbia: University of Kragujevac.
[11] I. Gutman, B. Furtula and S. B. Bozkurt (2014), “On Randic Energy”, Linear Algebra and its Applications, volume 442, pages 50 – 57. DOI: 10.1016/j.laa.2013.06.010
[12] X. Li and I. Gutman, (2006), “Mathematical aspects of Randić type molecular structure descriptors”, (Mathematical Chemistry Monographs No. 1). Kragujevac, Serbia: University of Kragujevac.
[13] X. Li, Y. Shi and I. Gutman (2010), “Graph Energy”, New York, NY: Springer. https://doi.org/10.1007/978-1-4614-4220-2
[14] M. Randić (1975), “Characterization of molecular branching”, Journal of the American Chemical Society, volume 97(23), pages 6609 – 6615. https://doi.org/10.1021/ja00856a001
[15] M. Randić (2008), “On history of the Randić index and emerging hostility towards chemical graph theory”, MATCH Communications in Mathematical and in Computer Chemistry, volume 59(1), pages 5 – 124. Retrieved from https://bit.ly/3ZyjnDm
[16] O. Rojo and L. Medina, (2012), “Construction of bipartite graphs having the same Randić energy”, MATCH Communications in Mathematical and in Computer Chemistry, volume 68(3), pages 805 – 814. Retrieved from https://bit.ly/3J7HHEb
[17] P. Siva Kota Reddy, K. N. Prakash and V. M. Siddalingaswamy (2017), “Minimum dominating Randić energy of a graph”, Vladikavkaz Mathematical Journal, volume 19(2), Article ID 6506. https://doi.org/10.23671/VNC.2017.2.6506
[18] S. K. Vaidya and G. K. Rathod (2021), “Randić energy of various graphs”, Advances and Applications in Discrete Mathematics, volume 28(2), pages 267 – 286. https://doi.org/10.17654/dm028020267
[19] H. B. Walikar, H. S. Ramane and P. R. Hampiholi, (1999), “On the energy of a graph”, In R. Balakrishnan, H. M. Mulder, and A. Vijaykumar (Eds.), Graph Connections, pages 120–123 New Delhi, India: Allied Publishers
Publicado
2025-10-30
Número
Sección
Research Articles
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



