THE DOMINATION NUMBER OF COMMUTING GRAPHS OVER MATRIX DIRECT SUMS
Resumen
Let $L$ be a finite commutative ring with unity and $M(m\oplus m, L)$ be the collection of all direct sum matrices over $L$. The commuting graph $\Gamma(M(m \oplus m, L))$ has vertex set $M(m \oplus m, L) \setminus Z(M(m \oplus m, L))$, where two distinct vertices are adjacent if they commute. In this paper, we investigate the domination number of $\Gamma(M(m \oplus m, L))$ and establish bounds for various ring structures. We prove that for rings, the domination number satisfies $\gamma(\Gamma(M(m \oplus m, L))) \geq 2$.
Descargas
Derechos de autor 2026 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



