Lyapunov Stability of Singular Integral Equations via Fourier Methods

  • Rahim Shah
  • Dhaou Lassoued Faculty of Sciences, University of Gabès
  • Arija Fayyaz
  • Javeria Saleem
  • Afsheen Zulfiqar
  • Tahir Ali

Resumen

In this paper, we utilize the Fourier transform to analyze the Lyapunov stability of singular integral equations. By applying this transform, we simplify the stability analysis by converting the singular integral equation into an algebraic form. Additionally, the Fourier transform is used to derive sufficient conditions for the Lyapunov stability of singular integral equations with impulses. Our results provide enhancements over traditional methods, offering a new perspective on the stability evaluation of these equations. The approach is illustrated through several theorems, and lemmas and examples.

Descargas

La descarga de datos todavía no está disponible.

Citas

The list of potential reviewers is:

1. Prof. Dr. Saif Ullah, Department of Mathematics, University of Peshawar, Pakistan.
Email: saifullah.maths@uop.edu.pk

2. Prof. Dr. Mudasir Younis, Department of Mathematics, Sakarya University, Turkey.
Email: myounis@sakarya.edu.tr

3. Prof. Dr. Ali Turab, School of Software, Northwestern Polytechnical University, Xian, China
     Email: aliturab@nwpu.edu.cn
Publicado
2025-12-30
Sección
Research Articles