Laplacian Minimum Split Dominating Energy of Graphs
Resumen
For a graph G, a subset D of V(G) is called a split dominating set if the induced graph <V-D> is disconnected. The split domination number is the minimum cardinality of a split domination set. In this paper we introduce the Laplacian minimum split dominating energy LEs (G) of a graph G and computed Laplacian minimum split dominating energies of some standard graphs. Upper and lower bounds for LEs (G) are established.
Descargas
La descarga de datos todavía no está disponible.
Publicado
2025-09-30
Número
Sección
Research Articles
Derechos de autor 2025 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



