Exploring g*b-Compactness and g*b-Connectedness through Generalized Topologies with Applications

  • Vidhya Professor, Department of Science and Humanities(Mathematics), Karpagam Institute of Technology, Coimbatore
  • Saied Jafari Dr. Rer. Nat. in Mathematics, Professor, College of Vestsjaelland South: Slagelse, Vestsjaelland Syd, DK https://orcid.org/0000-0001-5744-7354
  • Shobana A Professor, Department of Science and Humanities, Nehru Institute of Technology
  • Logapriya B

Resumen

This paper presents and explores two extended topological structures g*b-compactness and g*b-connectedness which serve as generalizations of classical compactness and connectedness by incorporating the concepts of  g-open and b-open sets. Beyond their theoretical significance, these generalized spaces offer valuable tools for modeling and analyzing complex systems where classical topological assumptions may not hold. Potential applications include the design of resilient network topologies, analysis of digital images and data clusters, control systems in engineering, and non-standard models in theoretical physics. The characteristics of c g*b-ompact and g*b-connected spaces examined in this study establish a strong foundation for advancing topological analysis in contexts where generalized notions of openness and continuity are fundamental.

Descargas

La descarga de datos todavía no está disponible.

Citas

[1]. Ahmad Al-Omari and Mohd. Salmi Md. Noorani, On generalized b-closed sets, Bull. Malays. Math. Sci. Soc. (2), 32(1), 2009, 19–30.

[2]. Andrijevic D., On b-open sets, Mat. Vesnik, 48(1–2), 1996, 59–64.

[3]. Balachandran K., Sundaram P., and Maki H., On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 12, 1991, 5–13.

[4]. Balachandran K., Sundaram P., and Maki J., On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ., 12, 1991, 5–13.

[5]. Benchalli S. S. and Priyanka M. Bansali, gb-Compactness and gb-Connectedness in topological spaces, Int. J. Contemp. Math. Sciences, 6(10), 2011, 465–475.

[6]. Caldas M., Semi-generalized continuous maps in topological spaces, Port. Math., 52(4), 1995, 339–407.

[7]. Devi R., Maki H., and Balachandran K., Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ., 14, 1993, 41–54.

[8]. Di Maio G. and Noiri T., S-closed spaces, Indian J. Pure Appl. Math., 18, 1987, 226–233.

[9]. Ganster M. and Steiner M., On bτ-closed sets, Appl. Gen. Topol., 8(2), 2007, 243–247.

[10]. Levine N., Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 19, 1970, 89–96.

[11]. Noiri T., On locally S-closed spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 64, 1978, 157–162.

[12]. Vidhya D. and Parimelazhagan R., g*b-Closed sets in topological spaces, Int. J. Contemp. Math. Sciences, 7(27), 2012, 1305–1312.

[13]. Vidhya D. and Parimelazhagan R., g*b-Homeomorphisms and contra-g*b-continuous maps in topological spaces, Int. J. Computer Applications, 58(14), 2012, 1–7.

[14]. Vidhya D. and Parimelazhagan R., g*b-continuous maps and pasting lemma in topological spaces, Int. J. Math. Analysis, 6(47), 2012, 2307–2315.
Publicado
2025-10-08
Sección
Mathematics and Computing - Innovations and Applications (ICMSC-2025)