On common fixed point theorems in s-multiplicative metric spaces

  • Pramodkumar Sharma Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon
  • Chintaman Tukaram Aage

Resumen

In this paper, we study the existence and uniqueness of a common fixed point for two weakly compatible self
maps that satisfy different contractive conditions in S-multiplicative metric spaces. We also provide an example to support the results.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abbas, M. and Doric, D., Common fixed point theorem for four mappings satisfying generalized weak contractive condition, Filomat 24(2), 1–10, (2010).

Abbas, M. and Jungck, G., Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341(1), 416–420, (2008).

Adewale, O. K., Ayodele, S. O., Oyelade, B. E. and Aribike, E. E., Equivalence of some results and fixed-point theorems in S-multiplicative metric spaces, Fixed Point Theory and Algorithms for Sciences and Engineering 2024(1), (2024).

Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3, 133–181, (1922).

Bashirov, A., Kurpinar, E. and Ozyapici, A., Multiplicative calculus and its applications, J. Math. Anal. Appl. 337(1), 36–48, (2008).

Czerwik, S., Contraction mappings in b-metric spaces, Acta Math. Univ. Comenian. 62(1), 51–56, (1993).

Frechet, M. M., Sur quelques points du calcul fonctionnel, Rend. Circ. Matem. Palermo 22, 1–72, (1906).

Hussain, N., Khaleghizadeh, S., Salimi, P. and Abdou, A. A. N., A new approach to fixed point results in triangular intuitionistic fuzzy metric spaces, Abstr. Appl. Anal. 2014, Article ID 690139, (2014).

Jungck, G. and Rhoades, B. E., Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29(3), 227–238, (1998).

Mustafa, Z., Shahkoohi, R. J., Parvaneh, V., Kadelburg, Z. and Jaradat, M. M. M., Ordered Sp-metric spaces and some fixed-point theorems for contractive mappings with application to periodic boundary value problems, Fixed Point Theory Appl. 2019, Article ID 16, (2019).

Mustafa, Z. and Sims, B., A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7(2), 289–297, (2006).

Parvaneh, V. and Hosseini Ghoncheh, S. J., Fixed points of (Ψ, Φ)Ω-contractive mappings in ordered P-metric spaces, Analytical and Numerical Solutions for Nonlinear Equations 4(1), 15–29, (2019).

Sedghi, S., Shobe, N. and Aliouche, A., A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64(3), 258–266, (2012).

Wilson, W. A., On quasi-metric space, Amer. J. Math. 53(3), 675–684, (1931).

Publicado
2025-09-30
Sección
Advances in Nonlinear Analysis and Applications